

GEORG-AUGUST-UNIVERSITÄT Göttingen

Datum: 25.10.2011 Nr.: 13

Inhaltsverzeichnis

<u>Seite</u>

Fakultät für Forstwissenschaften und Waldökologie:

Modulverzeichnis zur Prüfungs- und Studienordnung für den Bachelor-Studiengang " Molecular Ecosystem Sciences" 1773

Herausgegeben von der Präsidentin der Georg-August-Universität Göttingen

Fakultät für Forstwissenschaften und Waldökologie:

Nach Beschluss des Fakultätsrates der Fakultät für Forstwissenschaften und Waldökologie vom 03.05.2011 hat das Präsidium der Georg-August-Universität Göttingen am 20.09.2011 das Modulverzeichnis zur Prüfungs- und Studienordnung für den Bachelor-Studiengang "Molecular Ecosystem Sciences" genehmigt (§ 44 Abs. 1 Satz 2 NHG in der Fassung der Bekanntmachung vom 26.02.2007 (Nds. GVBI. S. 69), zuletzt geändert durch Artikel 1 des Gesetzes vom 29.06.2011 (Nds. GVBI. S. 202); § 37 Abs. 1 Satz 3 Nr. 5 b) NHG, § 44 Abs. 1 Satz 3 NHG).

Directory of Modules

Bachelor's degree programme "Molecular Ecosystem Sciences" (supplement to the examination and study regulations for the Bachelor's degree programme published in Amtliche Mitteilungen I 11/2011 p. 847)

Modules

B.MES.101: Molecular plant and stress physiology	1779
B.MES.102: Chemical ecology	1780
B.MES.103: Ecological genetics	1781
B.MES.104: Biotic and abiotic interactions	1782
B.MES.106: Microbiology and molecular biology	1783
B.MES.107: Ecological modelling	1784
B.MES.108: Computer science and mathematics	1785
B.MES.109: Plant ecology and diversity	1786
B.MES.111: Terrestrial biogeochemistry	1787
B.MES.112: Environmentally friendly production of wood	
B.MES.113: Methods in systems biology	1789
B.MES.114: Biodiversity of pro- and eukaryotic soil microbial communities	1790
B.MES.116: Conservation and ecosystem management	1791
B.MES.117: Atmosphere-ecosystem interactions	1792
B.MES.118: Resource assessment in ecosystems	1793
B.MES.119: Isotopes in ecosystem sciences	
B.MES.121: Global change	1796
B.MES.122: Molecular soil ecology	1797
B.MES.123: Project (research participation)	1798
B.MES.301: Special topics in plant methods and ecological applications I	1799
B.MES.302: Special topics in plant methods and ecological applications II	
B.MES.303: Semiochemical diversity	
B.MES.304: Protection of renewable resources	
B.MES.305: Conservation of biodiversity	1803
B.MES.306: Intraspecific diversity of plants	1804
B.MES-SK.105: Laboratory techniques	
B.MES-SK.110: The science-policy interface: society and research structures	
B.MES-SK.115: Scientific methods and project design	
SK.FS.E-FF-C1-1: Scientific Writing in English - C1.1	

Index by areas of study

1) Bachelor's degree programme "Molecular Ecosystem Sciences"

To successfully complete the Bachelor's degree programme, a total of 180 C must be earned.

a) Compulsory Modules in the field of Molecular Ecosystem Sciences

The 19 following modules comprising 114 Credits must be successfully completed.

B.MES.102: Chemical ecology (6 C, 4 SWS).1780B.MES.103: Ecological genetics (6 C, 4 SWS).1781B.MES.104: Biotic and abiotic interactions (6 C, 4 SWS).1782B.MES.106: Microbiology and molecular biology (6 C, 4 SWS).1783B.MES.107: Ecological modelling (6 C, 4 SWS).1784B.MES.108: Computer science and mathematics (6 C, 4 SWS).1785B.MES.109: Plant ecology and diversity (6 C, 4 SWS).1786B.MES.111: Terrestrial biogeochemistry (6 C, 4 SWS).1787B.MES.112: Environmentally friendly production of wood (6 C, 4 SWS).1788B.MES.113: Methods in systems biology (6 C, 4 SWS).1789B.MES.114: Biodiversity of pro- and eukaryotic soil microbial communities (6 C, 4 SWS).1791B.MES.116: Conservation and ecosystem management (6 C, 4 SWS).1792B.MES.118: Resource assessment in ecosystems (6 C, 4 SWS).1793B.MES.119: Isotopes in ecosystem sciences (6 C, 4 SWS).1795B.MES.121: Global change (6 C, 4 SWS).1796B.MES.122: Molecular soil ecology (6 C, 4 SWS).1797B.MES.123: Project (research participation) (6 C, 4 SWS).1797	B.MES.101: Molecular plant and stress physiology (6 C, 4 SWS) 1779
B.MES.104: Biotic and abiotic interactions (6 C, 4 SWS)1782B.MES.106: Microbiology and molecular biology (6 C, 4 SWS)1783B.MES.107: Ecological modelling (6 C, 4 SWS)1784B.MES.108: Computer science and mathematics (6 C, 4 SWS)1785B.MES.109: Plant ecology and diversity (6 C, 4 SWS)1786B.MES.111: Terrestrial biogeochemistry (6 C, 4 SWS)1787B.MES.112: Environmentally friendly production of wood (6 C, 4 SWS)1788B.MES.113: Methods in systems biology (6 C, 4 SWS)1789B.MES.114: Biodiversity of pro- and eukaryotic soil microbial communities (6 C, 4 SWS)1790B.MES.116: Conservation and ecosystem management (6 C, 4 SWS)1792B.MES.117: Atmosphere-ecosystem interactions (6 C, 4 SWS)1793B.MES.118: Resource assessment in ecosystems (6 C, 4 SWS)1793B.MES.119: Isotopes in ecosystem sciences (6 C, 4 SWS)1795B.MES.121: Global change (6 C, 4 SWS)1796B.MES.122: Molecular soil ecology (6 C, 4 SWS)1797	B.MES.102: Chemical ecology (6 C, 4 SWS)1780
B.MES.106: Microbiology and molecular biology (6 C, 4 SWS)	B.MES.103: Ecological genetics (6 C, 4 SWS)1781
B.MES.107: Ecological modelling (6 C, 4 SWS)	B.MES.104: Biotic and abiotic interactions (6 C, 4 SWS)1782
B.MES.108: Computer science and mathematics (6 C, 4 SWS)	B.MES.106: Microbiology and molecular biology (6 C, 4 SWS)1783
B.MES.109: Plant ecology and diversity (6 C, 4 SWS).1786B.MES.111: Terrestrial biogeochemistry (6 C, 4 SWS).1787B.MES.112: Environmentally friendly production of wood (6 C, 4 SWS).1788B.MES.113: Methods in systems biology (6 C, 4 SWS).1789B.MES.114: Biodiversity of pro- and eukaryotic soil microbial communities (6 C, 4 SWS).1790B.MES.116: Conservation and ecosystem management (6 C, 4 SWS).1791B.MES.117: Atmosphere-ecosystem interactions (6 C, 4 SWS).1792B.MES.118: Resource assessment in ecosystems (6 C, 4 SWS).1793B.MES.119: Isotopes in ecosystem sciences (6 C, 4 SWS).1795B.MES.121: Global change (6 C, 4 SWS).1796B.MES.122: Molecular soil ecology (6 C, 4 SWS).1797	B.MES.107: Ecological modelling (6 C, 4 SWS)1784
B.MES.111: Terrestrial biogeochemistry (6 C, 4 SWS)	B.MES.108: Computer science and mathematics (6 C, 4 SWS)1785
B.MES.112: Environmentally friendly production of wood (6 C, 4 SWS)	B.MES.109: Plant ecology and diversity (6 C, 4 SWS)1786
B.MES.113: Methods in systems biology (6 C, 4 SWS)	B.MES.111: Terrestrial biogeochemistry (6 C, 4 SWS)1787
B.MES.114: Biodiversity of pro- and eukaryotic soil microbial communities (6 C, 4 SWS)	B.MES.112: Environmentally friendly production of wood (6 C, 4 SWS)1788
B.MES.116: Conservation and ecosystem management (6 C, 4 SWS)	B.MES.113: Methods in systems biology (6 C, 4 SWS)1789
B.MES.117: Atmosphere-ecosystem interactions (6 C, 4 SWS)	B.MES.114: Biodiversity of pro- and eukaryotic soil microbial communities (6 C, 4 SWS)1790
B.MES.118: Resource assessment in ecosystems (6 C, 4 SWS)	B.MES.116: Conservation and ecosystem management (6 C, 4 SWS) 1791
B.MES.119: Isotopes in ecosystem sciences (6 C, 4 SWS)	B.MES.117: Atmosphere-ecosystem interactions (6 C, 4 SWS) 1792
B.MES.121: Global change (6 C, 4 SWS)	B.MES.118: Resource assessment in ecosystems (6 C, 4 SWS)1793
B.MES.122: Molecular soil ecology (6 C, 4 SWS)1797	B.MES.119: Isotopes in ecosystem sciences (6 C, 4 SWS)1795
	B.MES.121: Global change (6 C, 4 SWS)1796
B.MES.123: Project (research participation) (6 C, 4 SWS)	B.MES.122: Molecular soil ecology (6 C, 4 SWS)1797
	B.MES.123: Project (research participation) (6 C, 4 SWS)

b) Professionalisation

A total of 54 C have to be earned according to the following regulations.

aa) Key competencies

The 4 following modules comprising 24 C must be successfully completed.	
B.MES-SK.105: Laboratory techniques (6 C, 4 SWS)180)5

B.MES-SK.110: The science-policy interface: society and research structures (6 C, 4 SWS)1806	3
B.MES-SK.115: Scientific methods and project design (6 C, 4 SWS)1807	7
SK.FS.E-FF-C1-1: Scientific Writing in English - C1.1 (6 C, 4 SWS)1808	3

bb) Elective modules

A minumum of 5 modules mentioned below comprising at least 30 C must be successfully completed. Modules mentioned below may be substituted with alternative modules according to regulation 2 paragraph 4 of the examination regulations for this degree programme. Save sentence 2, one module may be substituted with any module regarding key competencies in the sense of Regulation 8 a of the General Examination Regulations comprising at least 6 C.

B.MES.301: Special topics in plant methods and ecological applications I (6 C, 4 SWS)	1799
B.MES.302: Special topics in plant methods and ecological applications II (6 C, 4 SWS)	1800
B.MES.303: Semiochemical diversity (6 C, 4 SWS)	.1801
B.MES.304: Protection of renewable resources (6 C, 4 SWS)	.1802
B.MES.305: Conservation of biodiversity (6 C, 4 SWS)	. 1803
B.MES.306: Intraspecific diversity of plants (6 C, 4 SWS)	. 1804

c) Bachelor's thesis

A total of 12 C are awarded for successfully completing the Bachelor's thesis.

Georg-August-Universität Göttingen		6 C
Module B.MES.101: Molecular plant and	4 WLH	
Learning outcome, core skills: In this course the students will learn how a plant functions at the cell, tissue and whole-plant level. The contents of the lectures encompass basic cell biology and plant physiology (nutrient uptake, and transport process, photosynthesis, respiration, plant hormones, development and stress adaptation). In the practical courses students will be trained at modern microscopes, will lean the basics of tissue culture, and will obtain practical expertise with the use of ecophysiological methods such as measurements of		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
photosynthesis, fluorescence, water potentials etc.		
1. Molecular plant physiology (Lecture)		2 WLH
2. Cell biology, tissue culture and stress responses (Practical course)		2 WLH
Examination: Written exam (120 minutes)		
Examination requirements: Cell compartments and organelles, their structure and function, membrane transport, molecular principles of photosynthesis and respiration, molecular functioning of plant hormones in plant development and stress adaptation, tree biotechnology. Skills: solid theoretical foundation in plant physiology and practical skills in tree regeneration and working under sterile conditions.		
Admission requirements: none	requirements: Recommended previous knowledge: Basic knowledge in biology	
Language: Person responsible for module: English Prof. Dr. Andrea Polle		:
Course frequency: each winter semester	-	
Number of repeat examinations permitted:Recommended semester:cf. examination regulations1		
Maximum number of students:		

each winter semester

25

cf. examination regulations

Maximum number of students:

Number of repeat examinations permitted:

Georg-August-Universität Göttingen		6 C
Module B.MES.102: Chemical ecology	4 WLH	
Learning outcome, core skills:		C/Weekly lecture
Students will learn to analyze the molecular basis of	plant-insect interactions from the	hours in total:
plant and from the insect point of view, based on pla	nt volatiles associated to plant	Attendance time:
stress correlating with defence status and nutritional	value of the plant. They learn how	56 h Self-study
information gained by insect antennae is examined t	o understand the translation of this	time: 124 h
information into insect behaviour. Students will learn		
on the basis of insect olfaction can be utilized and he	• •	
be extended into landscape by an integrative examin		
the molecular to the stand level. This will be the basi	Ũ	
semiochemical diversity in adaptation toward global	change and for ecosystem functions	
and services.		
Courses:		
1. Chemical ecology (Lecture)		1 WLH
2. Exercises in chemical ecology (Laboratory course, seminar)		3 WLH
Examination: Oral (ca. 20 minutes)		
Examination requirements:		
Biosynthesis of semiochemicals, signaling pathways, perception of semiochemicals,		
transduction pathways, physiological action and behavioural activity of semiochemicals,		
syn- and demecological aspects.		
Admission requirements: Recommended previous knowle		edge:
none	none	
Language:	Person responsible for module:	
English	Prof. Dr. Stefan Schütz	
Course frequency:	Duration:	

1 Semester[s]

1

Recommended semester:

Georg-August-Universität Göttingen		6 C
Module B.MES.103: Ecological genetics	4 WLH	
 Learning outcome, core skills: Understanding of the importance of intraspecific (genetic) variation for ecosystem processes and functions, in particular knowledge of modern methods to assess genetic diversity in diverse groups of organisms understanding of the role of the evolutionary factors to shape genetic diversity with emphasis on selection understanding of evolutionary processes including adaptation under natural conditions and in managed ecosystems 		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
 understanding of the impact of global change or Courses: Ecological genetics (Lecture) Assessment of genetic variation (Laboratory content) 	2 WLH 2 WLH	
Examination: Oral (ca. 20 minutes)		
Examination requirements: Use of modern methods to assess genetic variation in diverse groups of organisms, evolutionary factors and how they shape genetic diversity, the role of adaptation under natural or managed conditions, impact of global change.		
Admission requirements: none	Recommended previous knowle	dge:
Language:Person responsible for module:EnglishProf. Dr. Reiner Finkeldey		
Course frequency: each winter semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted:Recommended semester:cf. examination regulations1		
Maximum number of students: 25		

Georg-August-Universität Göttingen Module B.MES.104: Biotic and abiotic in	6 C 4 WLH	
Learning outcome, core skills: Interactions between biotic and abiotic components responsible for ecosystem properties and functions a submodule focused on the biochemistry of soils; a focus on pathogens. Students will be trained to a interactions at different scales.	C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h	
Significance of soil biochemistry for ecosystem pro basic soil properties and chemical principles. Trans solid, liquid, gaseous and living phases in soil will g of soils as the main part of terrestrial ecosystems a knowledge from molecular to pedon and field scale		
Biotic interactions will be studied at different levels molecular basis such as genes and their products and/or animals including wildlife.		
Courses:		
1. Soil biochemistry (Lecture, seminar)		2 WLH 2 WLH
2. Biotic interactions in ecology (Lecture, seminar) Examination: Written exam (90 minutes)		
Examination requirements: Biochemical processes in soils, weathering and soil formation, biotic drivers, factors of soil formation, soil organisms and decomposition processes, soil organic matter and interactions with clay minerals, molecular basis of biotic interactions, genes and their products, interactions among different organisms.		
Admission requirements: Recommended previous knowled none		dge:
Language: English	Person responsible for module: Prof. Dr. lakov Kuzyakov	
Course frequency: each winter semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 1	
Maximum number of students:		

25

Georg-August-Universität Göttingen Module B.MES.106: Microbiology and m	6 C 4 WLH	
Learning outcome, core skills: Students will be introduced to molecular, biochemical and physiological aspects in microbiology and molecular biology which is important to Ecosystem Sciences. The acquired knowledge allows the students to address questions and problems in Ecology and Systems Biology on molecular levels and understand the background of modern molecular methods that can be applied to solve such topics.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Microbiology and biotechnology (Lecture) 2. Molecular biology (Lecture) Examination: Oral (ca. 20 minutes)		2 WLH 2 WLH
Examination requirements: Basic knowledge on genetics, physiology, and ecology of microorganisms (bacteria and fungi), applications of microorganism in biotechnology generally and with specific focus on ecological tasks, structure and functions of DNA, RNA, proteins and exemplified metabolites, basic concepts and techniques in molecular biology, recombinant DNA technology, DNA transfer techniques, handling of GMOs.		
Admission requirements:	Recommended previous knowle	edge:
Language: English	Person responsible for module: Prof. Dr. Ursula Kües	
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted:Recommended semester:cf. examination regulations2		
Maximum number of students: 25		

Georg-August-Universität Göttingen Module B.MES.107: Ecological modelling		6 C 4 WLH
Learning outcome, core skills: Comprehensive knowledge of ecological models, theo of interdisciplinary analytical thinking. Critical analysis limitations of different modelling approaches.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Ecological modelling (Lecture) <i>Contents</i> : Theoretical basics as well as classical and modern models of terrestrial ecology with		2 WLH
 special consideration of models in microbial ecology. 2. Ecological modelling (Tutorial) <i>Contents</i>: Application and analysis of classic and modern ecological models and concepts . 		2 WLH
Examination: Written exam (90 minutes) Examination prerequisites: Regular attendance of tutorial		
Examination requirements: Comprehensive knowledge of ecological models, theo Interdisciplinary analytical thinking skills. Ability to critic chances and limitations of different modelling approact	ically analyze and evaluate the	
Admission requirements: Recommended previous knowledge: none none		dge:

none	none
Language:	Person responsible for module:
English	Prof. Dr. Kerstin Wiegand
Course frequency:	Duration:
each summer semester	1 Semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	2
Maximum number of students: 25	

Georg-August-Universität Göttingen		6 C
Module B.MES.108: Computer science and mathematics		4 WLH
Learning outcome, core skills: Understanding of basic notions and methods of computer science and mathematics, including: representation of information, databases, the World Wide Web, foundations of programming, simulation, visualization; notations from logic and set theory, relations, graphs, functions, differentiation, extreme values, integration; vectors, linear transformations, matrices, eigenvalues; scale levels of variables, measures of location, dispersion and correlation, linear regression, probability, sampling, confidence intervals, fundamentals about statistical testing.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Computer science and mathematics (Lecture 2. Computer science and mathematics (Exercis		3 WLH 1 WLH
Examination: Written exam (90 minutes) Examination prerequisites: 60% of points from homework exercises		
Examination requirements: Understanding of basic notions and methods of co including: databases, WWW, foundations of progra graphs, functions, differentiation, extreme values, descriptive statistics, linear regression, probability,	amming, simulation, visualization; integration; vectors, linear algebra;	
Admission requirements: Recommended previous knowle none none		edge:
Language: English	Person responsible for module: Prof. Dr. Winfried Kurth	
Course frequency:	Duration:	

each summer semester	1 Semester[s]
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 2
Maximum number of students: 25	

Georg-August-Universität Göttingen Module B.MES.109: Plant ecology and div	ersity	6 C 4 WLH
Learning outcome, core skills: Students are familiar with global to regional scale patterns of plant diversity, the distribution of major climatic and vegetation zones (ecozones, biomes), as well as their predominant land uses and anthropogenic impacts.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study
Students are familiar with basic aut- and synecological concepts in plant and vegetation ecology from the level of the individual plant to plant communities. They have learned to distinguish different major plant communities in Central Europe and are familiar with their specific abiotic site conditions, and their conservation significance. Students are able to apply ecological field methods and to perform basic analyses of diversity and community structure.		time: 124 h
Courses: 1. Plant ecology and diversity (Lecture)		2 WLH
2. Plant ecology and diversity (Field studies)		2 WLH
Examination: Oral (ca. 20 minutes) Examination prerequisites: Constant and active participation		
Examination requirements: Distribution and determinants of ecozones and biome of plant diversity, alpha-beta-gamma diversity, aut-and communities and their relations with abiotic site condi- and analysis methods.	d synecological concepts, plant	
Admission requirements: none	Recommended previous knowle	edge:
Language: English	Person responsible for module: Prof. Dr. Holger Kreft	
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 2	
Maximum number of students: 25		

Georg-August-Universität Göttingen Module B.MES.111: Terrestrial biogeochemistry		6 C 4 WLH
Learning outcome, core skills: At the end of this course students should understand the major biogeochemical processes at the interface of biosphere, lithosphere hydrosphere and atmosphere. Students will be able to detect where measurements of biogeochemical processes are useful using a system based approach. They will have gained practical experience in relevant measurements of biogeochemical processes in terrestrial ecosystems.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Terrestrial biogeochemistry (Lecture) 2. Biogeochemical processes (Laboratory course) Examination: Written examination (120 minutes) and term paper (max. 10 pages)		2 WLH 2 WLH
Examination requirements: Cycles in biogeochemistry, element ratios, carbon cycle of terrestrial ecosystems, biogeochemical cycling on land, nitrogen cycle of terrestrial ecosystems, soil development, mass balances at different scales, redox reaction in natural environments, biogeochemistry of wetlands, measurements of biogeochemical processes.		
Admission requirements: none Language:	Recommended previous knowle none Person responsible for module:	

Prof. Dr. Edzo Veldkamp

Recommended semester:

Duration:

3

1 Semester[s]

English

25

Course frequency:

each winter semester

cf. examination regulations

Maximum number of students:

Number of repeat examinations permitted:

Georg-August-Universität Göttingen	6 C
Module B.MES.112: Environmentally friendly production of wood	4 WLH
Learning outcome, core skills:	C/Weekly lecture
Environmentally friendly use of timber, of wood for energy and wood products. Basics	hours in total:
and practice of wood protection and degradation by fungi. Knowledge of technological	Attendance time:
relevant wood properties of important commercial timbers. Modification technology for	56 h Self-study
long-living major forest products (lumber, veneer, plywood, wood-based composites) and their significance for forest utilization.	time: 124 h
Courses:	
1. Wood biology (Lecture, exercises, laboratory visits, excursion)	2 WLH
Contents:	
Classroom lectures with practical exercises, visits in labs and short presentations of the	e
students, one excursion to a wood processing company.	
2. Wood-based-composites (Lecture, exercises, laboratory visits, excursion) Contents:	2 WLH
Classroom lectures with practical exercises, visits in labs and short presentations of the	e
students, one excursion to a wood processing company.	
Examination: Oral (ca. 20 minutes)	
Examination requirements:	
Anatomy, wood physics, wood chemistry, wood properties, wood-based composites,	
wood-plastic composites, wood modification, wood protection.	
Admission requirements:	

Admission requirements:	Recommended previous knowledge:
none	none
Language:	Person responsible for module:
English	Prof. Dr. Holger Militz
Course frequency:	Duration:
each winter semester	1 Semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	3
Maximum number of students: 25	

Georg-August-Universität Göttingen		6 C
Module B.MES.113: Methods in systems biology		4 WLH
-		C/Weekly lecture
"Omics" techniques are the backbone of modern sys	Learning outcome, core skills: Omics" techniques are the backbone of modern systems biology. This course comprises lectures and practicals in transcriptomics and metabolomics.	
The students will learn the theory of these applications, and the functioning of the required hard- and software. The students will obtain practical training in selected methods. This involves lab work as well as computer applications. The learning outcome will be that the students are to apply "omics" methods to questions in ecology and systems biology.		56 h Self-study time: 124 h
Courses: 1. Genomics (Lecture, practicals)		1 WLH
2. Transcriptomics and metabolomics (Lecture, p	racticals)	2 WLH
3. Proteomics (Lecture, practicals)		1 WLH
Examination: Term paper (20 pages max.)		
Examination requirements: Detailed knowledge and understanding of all steps of experimental designs and methods for their statistica two-factorial anova, regression, nonparametric methor probability distributions, theory of molecular biology a analyses and application of software for metabolomic software. Skills: knowledge how to analyse plant tissues by ap methods.	I analysis (t-tests, one- and ods), descriptive statistics and and practical skills in laboratory c, proteomic and transcriptomic	
Admission requirements: B.MES.101, B.MES.103, B.MES.106, B.MES.108	Recommended previous knowle	dge:
Language: English	Person responsible for module: Prof. Dr. Andrea Polle	
Course frequency: each winter semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 3	
Maximum number of students: 25		
Additional notes and regulations:		

Additional notes and regulations:

Admission requirements: Successful examination in a minimum of 2 of the following courses: B.MES.101: Molecular plant and stress physiology, B.MES.103: Ecological genetics, B.MES.106: Microbiology and molecular biology, B.MES.108: Computer science and mathematics.

Georg-August-Universität Göttingen		6 C
Module B.MES.114: Biodiversity of pro- and eukaryotic soil microbi- al communities		4 WLH
Learning outcome, core skills: Biodiversity, phylogenetics, morphology and functions of soil microbial communities consisting of prokaryots (archea, bacteria) and eukaryots (algae and fungi); diversity of prokaryotic microbial metabolism and environmental functions. Knowledge of prokaryotic microorganisms and algae relevant for environmental functions, ability to identify these organisms and to analyse them with molecular methods; ability to identify major lineages of cyanobacteria and eukaryotic algae from cultures by microscopy.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Biodiversity of pro- and eukaryotic soil microk 2. Biodiversity of pro- and eukaryotic soil microk course) Examination: Protocol (10 pages max.)		2 WLH 2 WLH
Examination requirements: Students prove their ability to perform specific micro independently and their ability to record, interpret an in written form.		
Admission requirements: none	Recommended previous knowle	edge:
Language: English	Person responsible for module: PD Dr. Rolf Daniel	
Course frequency: each winter semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 3	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.116: Conservation and eco		
Learning outcome, core skills: The course imparts knowledge about the sustainable management of forest ecosystems and about nature conservation. Based on some fundamentals of forest ecology such as the impact of competitive interactions between trees, options of stand management are presented. Mixed stands and their management are of special importance. The course will provide information on how to analyze forest stands and how to derive appropriate silvicultural treatments in order to achieve the goals set by a given forest owner. The nature conservation part will introduce priority goals of conservation biology, the major threats to natural ecosystems and how they can be managed.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Forest ecosystem management (Lecture) 2. Nature conservation (Lecture) Examination: Written exam (120 minutes)		2 WLH 2 WLH
Examination requirements: Competition in plant communities, plant – environment interactions, mixed stands, principles of stand management, silvicultural systems, human land-use, climate change, biodiversity, ecosystem functioning.		
Admission requirements: none	Recommended previous knowle	dge:
Language: English	Person responsible for module: Prof. Dr. Christian Ammer	
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 5	
Maximum number of students: 25		

Georg-August-Universität Göttingen Module B.MES.117: Atmosphere-ecosystem interactions	6 C 4 WLH
Learning outcome, core skills:	C/Weekly lecture
In this course students will gain insights in the main atmospheric characteristics and how	hours in total:
they influence ecosystem processes and fluxes between ecosystem compounds (e.g.	Attendance time:
air, plants, soil). They will also learn how ecosystems feed back to the atmosphere at	56 h Self-study
local and global scale. This will form the basis for understanding the impact of climate	time: 124 h
change on ecosystem functions and services. The lecture course will give an overview	
on atmospheric variables such as radiation, humidity, temperature, and wind and their	
interactions with terrestrial ecosystems. In the seminar/exercise class, the understanding	
will be deepened by quantitative exercises. The students will be trained in quantitative	
and qualitative scientific methods to describe climate-dependent physical, chemical and	
biological processes in terrestrial ecosystems enabling them to understand and evaluate	
the current discussion on climate change and its impact on terrestrial ecosystems.	
Courses:	
1. Atmosphere-ecosystem interactions (Lecture)	2 WLH
2. Atmosphere-ecosystem interactions (Seminar, exercise)	2 WLH
Examination: Written exam (120 minutes)	
Examination prerequisites:	
50% of points from exercises	
Examination requirements:	
Qualitative and quantitative description of radiation, humidity, temperature, wind, their	
interactions with terrestrial ecosystems, carbon and water cycle, atmospheric chemistry,	
	1

climate change, climate modelling.

Admission requirements:	Recommended previous knowledge:
none	none
Language:	Person responsible for module:
English	Prof. Dr. Alexander Knohl
Course frequency:	Duration:
each winter semester	1 Semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	5
Maximum number of students: 25	

Georg-August-Universität Göttingen	6 C 4 WLH
Module B.MES.118: Resource assessment in ecosystems	
Learning outcome, core skills: The students will be trained	C/Weekly lecture hours in total:
 to analyse issues and problems of ecological monitoring, with a focus on terrestrial ecosystems, to plan their own monitoring studies on statistically sound grounds balancing scientific-technical ojectives and economic feasibility, to critically assess and understand monitoring studies carried out by other. 	Attendance time: 56 h Self-study time: 124 h
These learning outcomes imply acquiring / enchancing knowledge and skills in the following fields:	
 design-based statistical sampling, including estimation design, empirical statistical models, characteristics of a seriers of sampling designs and plot designs, the systematic planning process in monitoring studies. 	
Courses: 1. Resource assessment in ecosystems (Lecture) <i>Contents</i> : The lectures comprise the theoretical foundations of monitoring and also the discussion based analysis of cases.	2 WLH
2. Resource assessment in ecosystems (Laboratory course) <i>Contents</i> : The field labs are practical exercises in field data collection techniques and measurement devices, the in-house labs are on data analysis and estimation.	2 WLH
Examination: Written exam (120 minutes)	
Examination requirements: Basics of descriptive and inferential statistics (mean, variance, standard error, confidence interval, bias, precision, random selection), relevant basic sampling design options (simple random, stratified random, systematic, cluster sampling), relevant response designs options (fixed area plots, variable plots, distance techniques, point sampling, line sampling). Statistical estimation. Planning criteria for assessments.	

Admission requirements:	Recommended previous knowledge:
B.MES-SK.115, B.MES.108	none
Language:	Person responsible for module:
English	Prof. Dr. Christoph Kleinn
Course frequency:	Duration:
each winter semester	1 Semester[s]
Number of repeat examinations permitted:	Recommended semester:

cf. examination regulations	5
Maximum number of students: 25	

Georg-August-Universität Göttingen		6 C
Module B.MES.119: Isotopes in ecosystem sciences		4 WLH
Learning outcome, core skills: The course provides a very broad background for isotope applications in ecosystem compartments including soils, plants, atmosphere, and microorganisms. Overview of various tracer methods and isotope applications will be presented. The specifics of stable and radioactive isotopes for investigations of ecosystem processes from submolecular to global scale will give deep background for future isotope applications in Bachelor, Master and PhD theses.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Stable isotopes (Lecture, seminar with exercises) 2. Radioactive isotopes and labeling techniques (Lecture, seminar) Examination: Written exam (90 minutes)		2 WLH 2 WLH
Examination requirements: Knowledge of specified teaching content, achievement of defined goals and proof of target competence.		
Admission requirements: none		
Language: English	Person responsible for module: Prof. Dr. lakov Kuzyakov	
Course frequency:Duration:each winter semester1 Semester[s]		
Number of repeat examinations permitted:Recommended semester:of. examination regulations5		
Maximum number of students: 25		

Georg-August-Universität Göttingen Module B.MES.121: Global change		6 C 4 WLH
 Learning outcome, core skills: At the end of this course the students are expected to have insight in the major components of the earth system and how they are connected, understand how environmental processes and biogeochemical cycles are regulated by biosphere-hydrosphere-atmosphere feedbacks and how they are affected by global chance through natural and anthropogenic processes, are able to understand and evaluate simple biogeochemical models. 		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Global change (Lecture) 2. Global change (Modelling exercises, seminar, field excursion)		2 WLH 2 WLH
Examination: Written exam (120 minutes) Examination prerequisites: Successful completion of exercises and seminar		
Examination requirements: Global water cycle, global carbon cycle, global cycle of nitrogen, phosphorus and sulfur, causes of human-induced global change, modeling problems related to global change, literature research, seminar presentation.		
Admission requirements: none		
Language: English	Person responsible for module: Prof. Dr. Edzo Veldkamp	
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 6	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C
Module B.MES.122: Molecular soil ecology		4 WLH
	.97	
Learning outcome, core skills: Relationships between genetic diversity of soil organisms and ecological processes will be analyzed in model high throughput laboratory systems. Experiments will be set up allowing to quantify the relative contribution of the identity and diversity of species / genetic lineages for ecosystem processes, such as productivity and decomposition of model substrates. The experiments will form the basis for understanding how decomposer communities respond to environmental stressors such as changes in temperature or exposure to heavy metals. Students will become familiar with molecular technologies used for analyzing the structure and function of decomposer systems, such as quantitative real time PCR, tagging of organisms by fluorescent markers compound specific stable isotope lipid analysis and molecular gut content analysis.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses:		
1. Molecular soil ecology (Laboratory course)		2 WLH
2. Molecular soil ecology (Seminar)		2 WLH
Examination: Oral presentation (ca. 15 minutes) with written outline (10 pages max.)		
 Examination requirements: Knowledge on 1. microbial interactions in soil, 2. functioning of genetic diversity in soil microbial communities, 3. techniques for analyzing soil micro-foodwebs such as quantitative rtPCR, fluorescent labeling, stable isotope and lipid analysis, 4. the response of soil microorganisms to environmental stressors such as temperature and heavy metal. 		
Admission requirements: none	Recommended previous knowledge: none	
Language: English	Person responsible for module: Prof. Dr. Stefan Scheu	
Course frequency: each summer semester Number of repeat examinations permitted:	Duration: 1 Semester[s] Recommended semester:	
cf. examination regulations Maximum number of students: 25	6	

Georg-August-Universität Göttingen Module B.MES.123: Project (research participation)		6 C 4 WLH
Learning outcome, core skills: Advanced knowledge of scientific methods and procedures by active participation in a research project conducted by a lecturer of the program. Ability to analyze, interpret and present relevant data.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Project (research participation) (Laboratory courses/work) <i>Contents</i> : Laboratory courses/work and/or active participation in ongoing research projects of lecturers involved		3 WLH
2. Project (research participation) (Seminar) <i>Contents</i> : Seminar on the own contribution to research		1 WLH
Examination: Oral presentation (ca. 15 minutes) with written outline (10 pages max.)		
Examination requirements: Scientific hypotheses, experimental design, laboratory techniques, analysis interpretation and scientific presentation of research results.		
Admission requirements: At least 120 credits earned	Recommended previous knowledge:	
Language: English	Person responsible for module: Prof. Dr. Reiner Finkeldey	
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 6	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.301: Special topics in plant methods and ecological applications I		
Learning outcome, core skills: This elective module consists of a seminar and advanced method courses. In the seminar the students will be informed about recent development and new discoveries in forest botany, plant – microbial interactions, biotechnology, plant molecular genetics and practical applications. In the advanced method courses student undertake internships and/or field excursions to learn new methods and applications in plant physiology and ecology. The students will take responsibility in the organization of their study program.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Forest botany (Seminar) 2. Ecological applications / Field excursion (Lecture, practical)		2 WLH 2 WLH
Examination: Oral presentation (ca. 15 minutes) and written report (10 pages max.)		
Examination requirements: Discussion of scientific presentations, knowledge in recent problems in Forest Botany, application of advanced scientific methods to selected problems in plant science. Skills: knowledge in critical text analyses and presentation skills, knowledge in data base research, practical skills in handling modern equipment for plant analyses.		
Admission requirements: none	Recommended previous knowledge: In-depth knowledge in biology is required	
Language:Person responsible for module:EnglishProf. Dr. Andrea Polle		
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students:		

Georg-August-Universität Göttingen		6 C
Module B.MES.302: Special topics in plant methods and ecological applications II		4 WLH
Learning outcome, core skills: This elective module consists of a seminar and an advanced method course. The seminar will be conducted as a journal club. The students will get lists of papers which they have to read and present during the semester. The topics will be chosen from recent literature. The goal is to become involved in research and to learn to understand how to structure research and to publish. In the advanced method courses, lectures and specialized techniques will be taught and practiced. The students will organize the journal club.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Advanced plant biochemistry and genetics / Journal club (Seminar) 2. Advanced methods (Lecture, practical)		2 WLH 2 WLH
Examination: Oral presentation (ca. 15 minutes) and written report (10 pages max.)		
Examination requirements: Reading and analyzing scientific publications, in-depth understanding of scientific working methods in plant ecology and molecular biology. Skills: knowledge in critical text analyses and presentation skills, knowledge in research methods.		
Admission requirements: none	Recommended previous knowledge: In-depth knowledge in biology is required	
Language: English	Person responsible for module: Prof. Dr. Andrea Polle	
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students: 10		

Georg-August-Universität Göttingen Module B.MES.303: Semiochemical diversity		6 C 4 WLH
Learning outcome, core skills: Students will learn to investigate the dynamics of semiochemical diversity in different types of ecosystems. This involves field sampling of important plants and animals, volatile extraction from different tissues, laboratory analyses of various types of volatile markers, data analyses and interpretation. Students will learn practical steps to assess semiochemical diversity, and will be able to evaluate the use of chemo-ecological methods for applications in plant protection, nature conservation, and ecosystem management.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Semiochemical diversity (Lecture) 2. Methods to study semiochemical diversity and biodiversity (Workshop, laboratory course) Examination: Term paper (20 pages max.)		1 WLH 3 WLH
Examination requirements: Classification of semiochemicals, measures of chemical and biological diversity, analytical and determination methods, key species, key volatiles, key processes, semiochemicals in practical application.		
Admission requirements: B.MES.102	Recommended previous knowle	edge:
Language: English	Person responsible for module: Prof. Dr. Stefan Schütz	
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students: 25		

Language:

Course frequency:

each summer semester

cf. examination regulations

Maximum number of students:

Number of repeat examinations permitted:

English

25

Georg-August-Universität Göttingen Module B.MES.304: Protection of renewable resources		6 C 4 WLH
Learning outcome, core skills: The use of chemical methods is commonplace in protection measures at various levels of biological organization in forest protection, plant protection and stored product protection. Students will learn the results of chemo-ecological approaches in integrated pest management based on selected projects and recent literature. Students will be able to critically evaluate benefits and limitations of chemo-ecological approaches in a production and conservation context. Examples will be taken from different geographic and climatic regions.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Protection of renewable resources based on chemical and chemo-ecological methods (Lecture)		1 WLH
2. Assessment of protection measures for renewable resources (Seminar, workshop)		3 WLH
Examination: Oral presentation (ca. 15 minutes) with written outline (5 pages max.)		
Examination requirements: Application of semiochemicals in different ecosystems, quality control, toxicology, integrated pest management, production of renewable resources, nature protection.		
Admission requirements: Recommended previous knowle none none		edge:

Person responsible for module:

Prof. Dr. Stefan Schütz

Recommended semester:

Duration:

4

1 Semester[s]

Georg-August-Universität Göttingen Module B.MES.305: Conservation of biodiversity		6 C 4 WLH
Learning outcome, core skills: The use of molecular methods is commonplace in conservation at various levels of biological organization from genes to ecosystems. Students will examin the results of molecular approaches in biodiversity conservation based on selected projects and recent literature. Students will be able to critically evaluate benefits and limitations of molecular studies in a conservation context. Examples will be taken from different geographic and climatic regions.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Conservation of biodiversity based on molecular tools (Lecture)		1 WLH
2. Assessment of molecular diversity for conservation (Seminar, Workshop) Examination: Oral presentation (ca. 15 minutes) with written outline (5 pages max.)		3 WLH
Examination requirements: Effective comprehension of scientific literature with regard to conservation of biodiversity, different methods used for conservation of biodiversity and their specific applications, critical evaluation of molecular studies in a conservation context.		
Admission requirements: none	Recommended previous knowle	edge:
Language:Person responsible for moduleEnglishProf. Dr. Reiner Finkeldey		
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students: 25		

Georg-August-Universität Göttingen Module B.MES.306: Intraspecific diversity of plants		6 C 4 WLH
Learning outcome, core skills: Students will learn to investigate the dynamics of intraspecific diversity in different types of ecosystems. This involves field sampling of important plants, DNA extraction from different tissues, laboratory analyses with various types of molecular markers, data analyses and interpretation. Students will learn practical steps to assess genetic diversity, and will be able to evaluate the use of DNA-based methods for applications in breeding, conservation, and ecosystem management.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Intraspecific diversity of plants (Lecture) 2. DNA based methods to study biodiversity (Workshops, laboratory exercise) Examination: Term paper (20 pages max.)		1 WLH 3 WLH
Examination requirements: DNA markers and techniques, estimation of intraspecific diversity in different types of ecosystems, methods used for experimental sampling, DNA extraction from different tissues, laboratory techniques, data analyses and interpretation and application of results.		
Admission requirements: Recommended previous knowle B.MES.103, B.MES.104 none		edge:
Language: English	Person responsible for module: Prof. Dr. Reiner Finkeldey	
Course frequency: each summer semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted:Recommended semester:cf. examination regulations4		
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C
Module B.MES-SK.105: Laboratory techn	4 WLH	
Learning outcome, core skills: Students will train in small groups to work in a laboratory. They will be introduced into modern basic and sophisticated methods in the fields of chemistry, biochemistry, microbiology and molecular biology to rules assuring personal and environmental safety and good scientific practice. Students acquire knowledge in experimental planning, technical performance, data interpretation and documentation of practical scientific research.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Organic trace analysis (Seminar, laboratory course, exercises) 2. Inorganic analysis (Seminar, laboratory course, exercises)		2 WLH 1 WLH
3. Microbiology and molecular biology (Laboratory course)		1 WLH
Examination: Protocol (20 pages max.)		
Examination requirements: Personal and environmental safety, handling and preparation of samples, calibration and use of standards, chromatographic methods, design, performance and documentation of chemical, microbial, and molecular experiments, assessment of results, team work to resolve experimental problems. Handling of radioactive substances, radiation safety, analytics of radioactive isotopes, contaminations with stable and radioactive isotopes .		
Admission requirements:	Recommended previous knowle	dge:
Language: English	Person responsible for module: Prof. Dr. Stefan Schütz	
Course frequency: each winter semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted:	Recommended semester: 1	

Maximum number of students:

25

Georg-August-Universität Göttingen		6 C
Module B.MES-SK.110: The science-policy interface: society and re- search structures		4 WLH
Learning outcome, core skills: Policy of Ecosystems:		C/Weekly lecture hours in total:
Knowledge about both: on the one hand the relation between ecosystem sciences and politics and on the other hand about the structure and processes of policy-making. Skills in political consulting and debating.		Attendance time: 56 h Self-study time: 124 h
The Research Community: Structure and Organization	n	
The scientific community depends on private and public research organizations and funding mechanisms. Students will understand the structure and organization of main institutions conducting or financing research and teaching (universities and large research institutions) in Germany and elsewhere.		
Courses: 1. Policy of ecosystems (Seminar)		2 WLH
2. The research community: structure and organiz	ation (Lecture, seminar)	2 WLH
Examination: 2 Oral presentations (ca. 10 minutes max.)) with written outline (10 pages	
Examination requirements: Current theories of science-policy interface and scientific conditions for knowledge transfer, conditions for application of ecosystem knowledge in society, basics of public policy analysis, research infrastructures, comparison between different research structures.		
Skills: understanding of the relationship between ecosystem research and actual utilization in society, understanding of the role of different actors in science, planning a research career.		
Admission requirements: none	Recommended previous knowle	dge:
Language:	Person responsible for module:	

Language:	Person responsible for module:
English	Prof. Dr. Maximilian Krott
Course frequency:	Duration:
each winter semester	1 Semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	2
Maximum number of students:	
25	

Georg-August-Universität Göttingen	6 C
Module B.MES-SK.115: Scientific methods and project design	4 WLH
Learning outcome, core skills:	C/Weekly lecture
Project design comprises all necessary steps to develop a scientific project (literature	hours in total:
acquisition, use of libraries, research hypothesis, selection of field sites, selection of	Attendance time:
methods, statistical considerations, expected outcome, time table) and is closely linked	56 h Self-study
to understanding, application and interpretation of basic terms and results of probability	time: 124 h
and descriptive and confirmative statistics, such as important discrete and continuous	
distributions, error propagation, least squares, confidence intervals, testing statistical	
hypotheses, and basic experimental designs.	
Courses:	
1. Research methods (Lecture, exercises)	3 WLH
2. Project design (Seminar)	1 WLH
Examination: Written exam (60 minutes) and term paper (10 pages max.)	
Examination requirements:	
Detailed knowledge and understanding of all steps of project development, basic	
experimental designs and methods for their statistical analysis (t-tests, one- and two-	
factorial ANOVA, regression, nonparametric methods), descriptive statistics and	
probability distributions. Involvement in one of the research projects of the department	
"Soil Science of Temperate Ecosystems", conduction of some analyses and research	
work, statistical and ecological evaluation of results, presentation on the seminar.	
Admission requirements: Recommended previous knowledge	edge:

Admission requirements:	Recommended previous knowledge:	
none	none	
Language:	Person responsible for module:	
English	Prof. Dr. Joachim Saborowski	
Course frequency:	Duration:	
each winter semester	1 Semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
cf. examination regulations	3	
Maximum number of students: 25		

Georg-August-Universität Göttingen Module SK.FS.E-FF-C1-1: Scientific Wri	ting in English - C1.1	6 C 4 WLH
Learning outcome, core skills: Progression of pre-existing discursive skills and competences at a level above B2 according to the <i>Common European Framework of Reference for Languages</i> , which will enable the student to compose scientific texts in English, particularly in the area of molecular ecosystems sciences, e.g.		C/Weekly lecture hours in total: Attendance time: 56 h Self-study time: 124 h
\cdot the skills needed to compose texts for scientific publications utilising specific language structures and conventions,		
 the acquisition of specific linguistic and stylistic structures in the English language as well as the development of a differentiated scientific vocabulary 		
 the expansion of the operative intercultural knowledge about practices required to write a scientific paper with a focus on molecular ecosystems sciences in an academic context. 		
Course: Scientific Writing in English (Course)		4 WLH
Examination: Portfolio consisting of two tasks (%%%) and of one task of approximately 10 pages (%		
Examination requirements: Proof of linguistic competence in an intercultural and scientific context. Demonstration of the ability to write scientific texts in the English language at a level above B2 according to the <i>Common European Framework of Reference for Languages</i> .		
Admission requirements: Module Mittelstufe II or placement test with a completed level B2 of the CEFR	Recommended previous knowle none	edge:
Language: English	Person responsible for module: Antonio Gallucci	:
Course frequency: each winter semester	Duration: 1 Semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: 4 - 6	
Maximum number of students: 25		
Additional notes and regulations:	L	