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1. Introduction

In this paper we prove commutativity of the triangle

K0(T ∗X)
Op

''

c

xx
Ktop

0 (X) µ
// KK0(C(X),C)

for a closed smooth manifold X. This triangle was first introduced by Paul
Baum and Ron Douglas in [3] to formulate the Atiyah-Singer index theorem
for elliptic operators in the framework of K-homology. An elliptic operator
on a closed manifold X determines an element in the analytic K-homology
group KK0(C(X),C), and the solution of the index problem amounts to
finding a topological description of this element. As proposed in [3], a con-
venient way to formalize this problem is to ask for the construction of an
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explicit K-cycle in the geometric K-homology group Ktop
0 (X) that (under

the natural isomorphism µ between analytic and geometric K-homology)
corresponds to the given elliptic operator.

Our renewed interest in the above triangle stems from its essential role
in our solution of the index problem for the Heisenberg calculus on contact
manifolds [6]. In [3] Baum and Douglas noted that commutativity of the
triangle is implied by the Atiyah-Singer index theorem for families of elliptic
operators. In this paper we give a direct proof that does not rely on the
families index theorem. Such a direct proof is needed in order to extend the
results of [6] to the families case and the equivariant case.

Commutativity of the triangle is tantamount to the assertion that the
index problem for elliptic operators reduces to the index problem for Dirac
operators. Hence, we provide a simple direct proof of reduction to the Dirac
case.

In section 2, the groups and maps of the triangle are defined. For the
proof of commutativity, preliminaries are given in sections 3 and 4. The
proof is given in section 5.

2. The triangle

2.1. K-theory (with compact supports). Throughout this paper K-
theory, denoted K●(Y ) for a locally compact space Y , is Atiyah-Hirzebruch
K-theory, i.e. topological K-theory with compact supports. Any element
in K0(Y ) is given by a triple (σ,E,F ) where E, F are C vector bundles on
Y , and σ ∶ E → F is a vector bundle map which is an isomorphism outside
a compact subset of Y .

In particular, if X is a closed smooth manifold, and P ∶ C∞(E0) →
C∞(E1) is an elliptic (pseudo)differential operator, then the principal sym-
bol σ ∶ π∗E0 → π∗E1 determines an element in K0(T ∗X). Here π ∶ T ∗X →
X is the projection.

2.2. Geometric K-homology. Geometric K-cycles were introduced in [2,
3]. For a detailed description of the relation between geometric K-homology
and analytic K-homology, see [5]. In this section we briefly recall the def-
inition and main features of K-cycle K-homology. The theory is defined
for the category of paracompact Hausdorff topological spaces. In particular,
since any CW complex is paracompact Hausdorff, K-cycle K-homology is
defined for any CW complex.

Given a paracompact Hausdorff topological space X, a K-cycle for X is a
triple (M,E,ϕ) consisting of a compact (without boundary) Spinc manifold
M , a smooth C vector bundle E on M , and a continuous map ϕ ∶M → X.
The collection of all such K-cycles, subject to a certain equivalence relation,
forms an abelian group under disjoint union. We denote this group by
Ktop
∗ (X).
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The equivalence relation that is imposed on the K-cycles is generated by
three elementary steps:

● bordism
● direct sum-dijoint union
● vector bundle modification

The abelian group Ktop
∗ (X) consists of the equivalence classes of K-cycles.

Addition is given by disjoint union,

(M0,E0, ϕ0) + (M0,E0, ϕ0) = (M0 ⊔M1,E0 ⊔E1, ϕ0 ⊔ ϕ1)
and the additive inverse of a K-cycle is obtained by reversing the Spinc

structure

−(M,E,ϕ) = (−M,E,ϕ).

The group Ktop
∗ (X) is Z/2 graded by the parity of the dimension of the Spinc

manifold M . In other words, Ktop
0 (X) and Ktop

1 (X) consist of equivalence
classes of (M,E,ϕ) cycles for which every connected component of M is
even or odd dimensional respectively.

2.3. The clutching map. Let X be a closed C∞ manifold, not required to
be oriented or even dimensional. Consider the Spinc manifold ΣX = S(TX×
R), the unit sphere bundle of TX ×R. TX is an almost complex manifold
(see Section 4 below). Therefore S(TX × R) is a stably almost complex
manifold, and therefore is a Spinc manifold with Dirac operator DΣX . Note
that the dimension of the manifold ΣX is two times the dimension of X,
and so is even.

ΣX is a sphere bundle over X. ϕ ∶ΣX →X is the projection S(TX×R)→
X. Let B(TX) be the unit ball bundle of TX and S(TX) the unit sphere
bundle of TX. For ΣX there is the “upper hemisphere” - “lower hemisphere”
decomposition

ΣX = B(TX) ∪S(TX) B(TX)
where the first copy of B(TX) is the upper hemisphere and the second copy
of B(TX) is the lower hemisphere. The Spinc structure on ΣX restricted to
the upper hemisphere is the Spinc structure of TX determined by its almost
complex structure.

Let (σ,π∗E0, π∗E1) be a (compactly supported) symbol on TX. We
shall assume that the support of σ is contained in the interior of B(TX).
Eσ denotes the vector bundle on ΣX

Eσ = π∗E0 ∪σ π∗E1

where π∗E0 and π∗E1 have been restricted to B(TX) which is then identi-
fied, respectively, with the upper and lower hemispheres of ΣX. π∗E0 and
π∗E1 are then clutched together on S(TX) by the vector bundle isomor-
phism σ.

Since the interior of the upper hemisphere of ΣX identifies with TX,
there is a push-forward map ι∗ ∶K0(TX)→K0(ΣX).
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Lemma 2.3.1. In K0(ΣX)

ι∗(σ,π∗E0, π∗E1) = [Eσ] − [ϕ∗E1]

Proof. Let σ̃ be the vector bundle map Eσ → ϕ∗E1 that on the lower hemi-
sphere is the identity map of π∗E1, and on the upper hemisphere is σ.
Hence, (by definition) ι∗(σ,π∗E0, π∗E1) = (σ̃,Eσ, ϕ∗E1). Since ΣX is com-
pact, (σ̃,Eσ, ϕ∗E1) = [Eσ] − [ϕ∗E1].

�

The clutching map

c ∶K0(TX)→Ktop
0 (X)

is

c(σ,π∗E0, π∗E1) = (ΣX,Eσ, ϕ)

Remark. In geometric K-homology, the K-cycle (ΣX,ϕ∗E1, ϕ) bounds,

and therefore is zero in Ktop
0 (X).

2.4. Analytic K-homology (with compact supports). We review an-
alytic K-homology with compact supports. For analytic K-homology see
[7, 8].

The category of topological spaces for which this theory is defined con-
sists of compactly generated Hausdorff topological spaces for which every
compact subset is second countable (i.e., metrizable). Any CW complex
has this property.

For a space X in our category we denote

Ka
j (X) = lim

Ð→

∆⊂X

KKj(C(∆),C)

The direct limit is taken over compact subsets ∆ ⊆ X. In the category of
CW complexes one could take the limit over all finite subcomplexes ∆.

We briefly review the definition of the Kasparov K-homology groups for
second countable compact Hausdorff spaces ∆. Then C(∆) is a unital
separable C∗-algebra. An even Fredholm module (T,H0,H1, ρ0, ρ1) con-
sists of two Hilbert spaces H0,H1 each equipped with a ∗-representation
ρj ∶C(∆) → L(Hj), and a bounded linear operator T ∶H0 → H1, such that
for all f ∈ C0(X)

(T ∗T − 1)ρ0(f), (TT ∗ − 1)ρ1(f), Tρ0(f) − ρ1(f)T

are compact operators.
An odd Fredholm module (T,H, ρ) consists of a Hilbert space H equipped

with a ∗-representations ρ∶C(∆) → H, and a self-adjoint bounded linear
operator T ∶H →H, such that for all f ∈ C0(X)

(T 2 − 1)ρ(f), Tρ(f) − ρ(f)T

are compact operators.
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The group KK0(C(∆),C) consists of equivalence classes of even Fred-
holm modules, while KK1(C(∆),C) consists of equivalence classes of odd
Fredholm modules. Addition is defined by direct sum of Fredholm modules.
The equivalence relation for Fredholm modules is generated by the direct
sum relation and operator homotopy (for details, see [7, 8]).

2.5. The “Choose an operator” map. We review (including excision)
the connection between elliptic operators trivial at infinity and compactly
supported K-homology.

Let W be a (not necessarily compact) manifold without boundary. A
pseudodifferential operator P ∶C∞

c (W,E)→ C∞

c (W,F ) of order zero is triv-
ial at infinity if there exists open sets Ω1,Ω2 in W and an isomorphism ψ of
vector bundles E∣Ω2 → F ∣Ω2, such that

● Ω1 has compact closure Ω̄1.
● W = Ω1 ∪Ω2.
● If a section s ∈ C∞

c (W,E) has support in Ω1 then the support of Ps
is in Ω1.

● If a section s ∈ C∞

c (W,E) has support in Ω2 then Ps = ψs.
There is a well-defined “choose an operator” map

K0(TW )→KK0
c (C0(W ),C)

even ifW is not compact. Given a compactly supported symbol (σ,π∗E,π∗F )
on TW , i.e., an element in K0(TW ), we construct an element in compactly
supported K-homology KK0

c (C0(W ),C) as follows.
First, we may assume that outside a compact set σ is the pull-back via

π of a vector bundle isomorphism. Granted this, we can choose a pseudo-
differential elliptic operator P of order zero that is trivial at infinity with
symbol σ, with properties as listed above.

If ∆ is an open set with smooth boundary and compact closure that
contains Ω1, then due to the properties listed above P maps C∞

c (∆,E) to
C∞

c (∆, F ). This “restriction of P to ∆” extends to a bounded operator

P∆ ∶ L2(∆,E)→ L2(∆, F )

and therefore an element [P∆] ∈ KK0(C(∆),C). Note that C(∆) acts
on the Hilbert spaces L2(∆,E), L2(∆, F ) by the evident multiplication
operators.

With ∆ and σ fixed, a different choice of operator Q will result in opera-
tors P∆, Q∆ that differ by a compact operator. With ∆ fixed, a homotopy
of σ can be lifted to a homotopy of operators. Finally, with σ and P fixed,
if ∆ ⊂ ∆′, then P∆′ ∈KK0(C(∆′),C) is the direct sum of the push forward
of P∆ ∈ KK0(C(∆),C) with a trivial element. In summary, the K-theory
class of σ determines an element in KK0

c (C0(W ),C).

We will need the following excision lemma.
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Lemma 2.5.1. Let W be a manifold, and let U be an open subset of W .
Then there is commutativity in the diagram

K0(TU) //

��

K0(TW )

��
KK0

c (C0(U),C) // KK0
c (C0(W ),C)

Proof. We may assume that the push-forward of a symbol σ from TU to
TW restricts to σ on TU . Therefore, the operator we choose on W restricts
to an operator on U with symbol σ, and outside of U this operator will be
trivial. �

2.6. The equivalence of geometric and analytic K-homology. Let ∆
be a finite CW complex. As was proven in [5], there is a natural isomorphism

µ ∶ Ktop
j (∆)→KKj(C(∆),C)

For the compactly supported theory, the isomorphism was introduced in [4],
and is constructed as follows. Let DE = E ⊗D be the Dirac operator D for
the Spinc manifold M , twisted by the vector bundle E. Form the bounded
elliptic pseudodifferential operator T =DE(1+D∗

EDE)−1/2, which defines an
element in

[DE] ∈KKj(C(M),C)

Then

µ(M,E,ϕ) = ϕ∗([DE]).

where ϕ∗ is

ϕ∗ ∶ Ka
j (M)→Ka

j (X)

Theorem 2.6.1. If X is a CW complex, then

µ ∶ Ktop
j (X)→Ka

j (X)

is an isomorphism.

Proof. That µ is an isomorphism for any CW complex X follows from the
result for finite CW complexes of [5]. Both groups Ktop

j (X) and Ka
j (X) are

the direct limit over finite subcomplexes ∆ ⊂X. �

3. A family of index 1 operators

We review the properties of the family of elliptic operators of index 1
introduced in [1]. See also [10]. We place it in the context of KK-theory.
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3.1. Properties of αF . Let π ∶F → X be a C∞ R vector bundle on the
closed C∞ manifold X. Then (once a connection has been chosen for F ) TF
can be viewed as a C vector bundle over the manifold TX. The projection
TF → TX is the derivative of F →X. The fibers of this vector bundle are of
the form TFx = Fx⊕Fx, which we view as the complex vector space Fx⊗C.

Let αF be a family of operators whose total space is F with base space
X, where in each fiber Fx we choose an order zero pseudodifferential elliptic
operator whose principal symbol, taken as an element in K0(TFx), is the
Bott element for TFx = Fx⊗C. Since the Bott element of TFx has compact
support, the family αF consists of operators that are trivial at infinity.

The family αF has three relevant properties.

Property 1. The principal symbol of the family αF is the Thom class
of TF , viewed as a C vector bundle on TX.

Property 2. The index of αF , as a family, is a trivial C line bundle on
X. In KK-theory, this can be expressed as follows. The family αF gives an
element in the group

KKc(C0(F ),C(X)) ∶= lim
Ð→

∆⊆F

KK(C(∆),C(X))

where ∆ ⊆ F ranges over all compact subsets of F and

π∗ ∶ KKc(C0(F ),C(X))→KK(C(X),C(X))

maps αF to the unit of the ring KK(C(X),C(X)).

Property 3. It follows from Property 2 that if ξ is any element in
KK(C(X),C), then the Kasparov product

αF#ξ ∈KK0
c (C0(F ),C)

is an element in compactly supported K-homology of F with

π∗(αF#ξ) = ξ ∈KK0(C(X),C)

See [1] for details on αF .

Proposition 3.1.1. There is commutativity in the diagram

K0(TX)

Op

��

Thom

≅

// K0(TF )

Op
��

KK(C(X),C) KK0
c (C0(F ),C)π∗oo

Proof. Let σ ∈K0(TX) be the symbol of the elliptic operator P on X, i.e.,
P = Op(σ). The Thom isomorphism K0(TX) → K0(TF ) maps σ to τ#σ,
where τ is the Thom class of TF as a complex vector bundle on TX. Then
Op(τ#σ) = αF#P and by Property 3 above, π∗(αF#P ) = P . �
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3.2. Hörmander’s operators. For clarity of exposition, we give some in-
dication here of Hörmander’s approach [10] to the construction of αF .

Let V be a finite dimensional R vector space with a given Euclidean
inner product. The Clifford algebra Cliff(V ) acts on the complexification
of the sum of the exterior powers Λ∗

CV . For v ∈ V , c(v) denotes Clifford
multiplication by v

c(v) ∶ ΛevenC V → ΛoddC V

Consider the elliptic operator

α = c(v) +D, D = d + d∗

which acts on C valued differential forms on V , and maps even to odd forms.
The total symbol of α is c(v + iξ), which is the Bott element β ∈ K0(TV ).
The operator α and its total symbol β are O(V ) equivariant,

α ∈KK0
O(V )(C0(V ),C) β ∈KK0

O(V )(C,C0(TV ))

Note that here (exceptionally for this paper) KK0
O(V )(C0(V ),C) is not com-

pactly supported.
If F is an R vector bundle on M , as above, choose a Euclidean structure

for F , thus reducing its structure group to O(n). Then due to the O(n)
equivariance of α, a family of operators in the fibers of F is determined,

α′F ∈KK0(C0(F ),C(M))

To obtain the element

αF ∈KK0
c (C0(F ),C(M))

in compactly supported KK-theory, realized as a family of elliptic operators
trivial at infinity, as in [1], a perturbation must be made on the operator α.
For details of this perturbation, see [10].

Remark 3.2.1. The total symbol β of the elliptic operator α on V is its
principal symbol when α is viewed as an element in the Weyl calculus.
Since β is invertible outside the point (0,0) in TV , it follows, using the Weyl
calculus, that the operator α is Fredholm. Moreover, by the Weyl calculus
index theorem, the index of α is the Bott number of its Weyl symbol β,
which is 1. In fact, as shown in [10], the null space of α is 1 dimensional,

and is spanned by the Gaussian e−∣v∣
2
/2 (a section of the line bundle V ×Λ0

CV
on V ). Hence, the families index of α′F is a trivial line bundle on M .

For details on the Weyl calculus, see [9].

4. The Thom class of T (TM)

Let X be a closed C∞ manifold. T (TX) is a complex vector bundle
over TX in two different ways. Therefore there are two Thom classes τ0, τ1.
One is the symbol of the Dirac operator DTX of TX, while the other is the
symbol of the family αTX .
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A Riemannian metric for the closed C∞ manifold X makes TX into
an almost complex manifold as follows. Choose normal coordinates x =
(x1, . . . , xn) on X, and let ξ = (ξ1, . . . , ξn) be the induced linear coordinates
on the fibers of TX. Then at point x = 0 we let

J
∂

∂xj
= − ∂

∂ξj
J
∂

∂ξj
= ∂

∂xj

Let π0 be the projection π0 ∶T (TX)→ TX, obtained by viewing T (TX) as
the tangent bundle of the manifold TX and using the standard projection
of a vector to the point from which it emanates. Hence, in this way T (TX)
is a complex vector bundle on TX. Let τ0 be its Thom class. Note that τ0

is the symbol of the Dirac operator DTX of the almost complex manifold
TX, 1

τ0 = σ(DTX)

With notation as in 3.1.1 above, let F = TX. Then TF = T (TX) is a com-
plex vector bundle over TX, where this time the projection π1 ∶T (TX) →
TX is the derivative of TX → X. This is not the same as the projection
π0 ∶T (TX) → TX above. Let τ1 be the Thom class of this complex vector
bundle. The Thom class τ1 is the symbol of the family αTX .

At first glance, it appears that there are two Thom isomorphisms

K0(TX) ≅Ð→K0(T (TX)) ∶ σ ↦ π∗j σ ⊗ τj , j = 0,1

where τ0, τ1 are the two Thom classes introduced above. However, these two
Thom isomorphisms are equal:

Lemma 4.0.2. Let [σ] be any element of K0(TX). Then in K0(T (TX))

[π∗0σ ⊗ τ0] = [π∗1σ ⊗ τ1]

Proof. Let πX ∶TX →X be the usual projection, and let πTX ∶T (TX)→ TX
be the projection for the tangent bundle of TX. There is a second map from
T (TX) to TX, i.e., the derivative of πX ∶TX → X. Denote π0 = πTX and
π1 = dπX .

We can view T (TX) as a fiber bundle on X via the projection πX ○
π0 ∶T (TX) → X. We denote W ∶= T (TX) if we view it as a fiber bundle
on X. The fiber Wx of W at a point x ∈X is isomorphic to a direct sum of
three copies of TxX,

Wx ≅ TxX ⊕ TxX ⊕ TxX

A point w ∈ Wx will be denoted as a triple (w0,wh,wv). First, w is a
tangent vector to TX. It emanates from a point w0 ∶= π0(w) ∈ TxX. The
pair (wh,wv) denotes the vertical and horizontal components of the tangent
vector w to the manifold TX at w0.

1Let W be a Spinc manifold, i.e., TW →W is a Spinc vector bundle, and therefore has
a Thom class τ . The symbol of the Dirac operator of W is this Thom class τ .
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More precisely, the derivative of πX ∶TX → X is a map dπX ∶T (TX) →
TX, whose kernel consists of the “vertical” tangent vectors T vertTX to TX.
There is the canonical identification T vertw0

(TX) ≅ TxX, so we have a short
exact sequence

0→ TxX → Tw0(TX) dπMÐ→ TxX → 0

We let wh ∶= dπX(w). Choosing a splitting of this short exact sequence we
have

Tw0(TM) ≅ TxX ⊕ TxX
and we let wv = w −wh.

With this notation, the projection πTX ∶T (TX)→ TX is the map

π0(w0,wh,wv) ∶= w0

while the derivative dπX ∶T (TX)→ TX is the map

π1(w0,wh,wv) = wh
We recall the standard construction of the Thom class for a complex

vector bundle π ∶F → B. On F , consider the vector bundles π∗ΛevenF and
π∗ΛoddF , the even and odd exterior powers of F . The Thom class is given
by the vector bundle map

τ ∶ π∗ΛevenF → π∗ΛoddF

which at v ∈ Fb is

τ(v) ∶= ∧v + ιv
where ιv is the adjoint of ∧v ∶α ↦ v ∧ α for the choice of some hermitian
structure on F .

The vector bundles on T (TX) used to construct the two Thom classes
τ0, τ1 are the same, i.e., the pull-back via πX ○ π0 = πX ○ π1 of the even and
odd parts of the exterior algebra ΛTX ⊗C. At a point w = (w0,wh,wv) in
T (TX), the Thom classes τ0, τ1 are given by

τ0(w) = τ(wv + iwh) wv + iwh ∈ TxX ⊗C
τ1(w) = τ(w0 + iwv) w0 + iwv ∈ TxX ⊗C

Let ρ be the diffeomorphism

ρ ∶ T (TX)→ T (TX) ∶ ρ(w0,wh,wv) = (wh,−w0,wv)
ρ is properly homotopic to the identity via maps ρt given by

ρt(w0,wh,wv) ∶= (w0 cosπt/2+wh sinπt/2,−w0 sinπt/2+wh cosπt/2,wv)
i.e., the map

T (TX) × [0,1]→ T (TX) ∶ (w, t)↦ ρt(w)
is proper.

Note that τ1(w) = iτ0(ρ(w)), i.e., τ1 = iρ∗τ0. Also π1 = π0 ○ ρ. Therefore

π∗1σ ⊗ τ1 = iρ∗(π∗0σ ⊗ τ0)
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�

Remark 4.0.3. Consider the commutative diagram of Proposition 3.1.1 in
the special case when F = TX,

K0(TX)

Op

��

Thom

≅

// K0(T (TX))

Op
��

KK(C(X),C) KK0
c (C0(TX),C)π∗oo

Since the two Thom isomorphisms are equal, the commutativity of this
diagram can be expressed as

[P ] = π∗[σP ⊗DTX] in KK0(C(X),C)

However, σP ⊗DTX has to be interpreted as an elliptic operator of order zero
on TX that is trivial at infinity, and whose principal symbol is homotopic
to σP ⊗σ(DTX). Note that σP ⊗σ(DTX) is not in any sense an operator of
Dirac type.

In the next section, by passing to an appropriate compactification of TX,
we will replace the somewhat non-explicit operator σP ⊗DTX by an actual
twisted Dirac operator.

5. Proof of commutativity

In this section we give our direct proof of reduction to Dirac. The proof
is direct, and does not use any form of the Atiyah-Singer index theorem.

Let P be an elliptic (pseudo)differential operator on the closed C∞-
manifold X,

P ∶ C∞(X,E)→ C∞(X,F )

E and F are complex C∞ vector bundles on X. P determines an element

[P ] = (T,H0,H1, ρ0, ρ1) ∈KK0(C(X),C)

where

● T = P (1 + P ∗P )−1/2

● H0 = L2(X,E) and H1 = L2(X,F )
● ρj ∶ C(X) → L(Hj) is f ↦ Mf where Mf is the multiplication

operator (Mfu)(p) = f(p)u(p).
The Dirac operator DΣX of the Spinc manifold ΣX, twisted by the vector

bundle Eσ, determines an element [Eσ ⊗DΣX] ∈ KK0(C(ΣX),C), which
pushes forward to

ϕ∗[Eσ ⊗DΣX] ∈KK0(C(X),C)

Theorem 5.0.4. In KK0(C(X),C)

[P ] = ϕ∗[Eσ ⊗DΣX]
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i.e., there is commutativity in the diagram

K0(TX)
Op

''

c

yy
Ktop

0 (X) µ
// KK0(C(X),C)

Proof. Consider the diagram

K0(TX)

Op

��

Thom

≅

// K0(T (TX))

Op
��

ι∗ // K0(T (ΣX))

Op

��
KK(C(X),C) KK0

c (C0(TX),C)π∗

≅

oo ι∗ // KK(C(ΣX),C)
ϕ∗

jj

The diagram commutes by Proposition 3.1.1 (for the square on the left),
Lemma 2.5.1 (for the square on the right), and the fact that π = ϕ ○ ι (for
the bottom row).

Starting in the upper left corner of the diagram, let (σ,π∗E,π∗F ) be the
symbol of the elliptic operator P . Applying the Thom isomorphism, we
obtain τ1⊗π∗1σ (where τ1 is the symbol of the family αTX). By Proposition
4.0.2 this is equal to τ0 ⊗ π∗0σ in K0(T (TX)), where now τ0 is the symbol
of the Dirac operator DTX of the almost complex manifold TX.

Since DTX is the restriction of the Dirac operator of ΣX to the upper
hemisphere, Lemma 2.3.1 implies that

ι∗(τ0 ⊗ π∗0σ) = σ(DΣX)⊗ (Eσ − ϕ∗F )
as elements in K0(T (ΣX)).

Commutativity of the diagram now implies that in KK(C(X),C)
[P ] = ϕ∗(DΣX ⊗Eσ) − ϕ∗(DΣX)⊗ F

Finally, ϕ∗(DΣX) = 0 in KK(C(X),C) because ΣX is the boundary of the
ball bundle B(TX ×R) as a Spinc manifold.

�
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