Modulverzeichnis

zu der Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Integrated Plant and Animal Breeding" (Amtliche Mitteilungen I Nr. 7/2019 S. 60, zuletzt geändert durch Amtliche Mitteilungen I Nr. 50/2020 S. 1055)

Module

M.Agr.0020: Genome analysis and application of markers in plantbreeding	.8236
M.Agr.0114: Sicherheitsbewertung biotechnologischer Verfahren in der Pflanzenzüchtung	. 8237
M.Cp.0004: Plant Diseases and Pests in Temperate Climate Zones	8239
M.Cp.0016: Practical Statistics and Experimental Design in Agriculture	.8240
M.FES.324: Environmental Biotechnology and Forest Genetics	. 8241
M.SIA.A02M: Epidemiology of international and tropical animal infectious diseases	. 8242
M.SIA.A14: Organic livestock farming under temperate conditions	.8244
M.SIA.A15M: Scientific writing in natural sciences	.8246
M.SIA.E11: Socioeconomics of Rural Development and Food Security	. 8248
M.SIA.E13M: Microeconomic Theory and Quantitative Methods of Agricultural Production	8249
M.SIA.I14M: GIS and remote sensing in agriculture	. 8250
M.SIA.P13: Agrobiodiversity and plant genetic resources in the tropics	. 8252
M.iPAB.0001: Quantitative genetics and population genetics	. 8254
M.iPAB.0002: Breeding schemes and programs in plant and animal breeding	.8255
M.iPAB.0003: Statistical genetics, breeding informatics and experimental design	.8256
M.iPAB.0004: Internship	.8257
M.iPAB.0005: Poultry breeding and genetics	. 8258
M.iPAB.0006: Breeding informatics	. 8260
M.iPAB.0007: Biotechnology and molecular genetics in plant and animal breeding	. 8261
M.iPAB.0008: Molecular and biotechnological methods in plant and animal breeding	.8263
M.iPAB.0009: Genetic resources	. 8264
M.iPAB.0010: Legal issues in plant and animal breeding	. 8265
M.iPAB.0011: Seed marketing	. 8266
M.iPAB.0012: Journal Club: Key papers in animal and plant breeding	.8267
M.iPAB.0013: Selection theory, design and optimisation of breeding programs	. 8268
M.iPAB.0014: Data Analysis with R	8269
M.iPAB.0015: Applied Machine Learning in Agriculture with R	. 8270
M.iPAB.0016: Applied effective R programming in animal breeding and genetics	. 8272
M.iPAB.0017: Applied Bioinformatics with R	. 8274

M.iPAB.0018: Introduction to the molecular genetic analysis of plant genetic resources	8276
M.iPAB.0019: Scientific Project: scientific methods, procedures and practical skills in animal and plant breeding	.8278
M.iPAB.0020: Breeding Lab Internship	.8279
M.iPAB.0021: Plant in vitro Cultures and Somatic Cell Genetics	. 8281
M.iPAB.0022: Molecular Genetics and Genomics	.8283

Übersicht nach Modulgruppen

I. Master-Studiengang "Integrated Plant and Animal Breeding"

1. Block A - Compulsory Modules

The following four compulsory modules worth overall 27 C must be successfully completed.

M.iPAB.0001: Quantitative genetics and population genetics (6 C, 6 SWS)	3254
M.iPAB.0002: Breeding schemes and programs in plant and animal breeding (6 C, 4 SWS)	3255
M.iPAB.0003: Statistical genetics, breeding informatics and experimental design (6 C, 4 SWS)8	3256
M.iPAB.0004: Internship (9 C, 6 SWS)	8257

2. Block B - Elective compulsory modules A

Out of the following elective compulsory modules at least four modules worth overall at least 21 C must be successfully completed.

M.Agr.0020: Genome analysis and application of markers in plantbreeding (6 C, 4 SWS)8236
M.Agr.0114: Sicherheitsbewertung biotechnologischer Verfahren in der Pflanzenzüchtung (6 C, 4 SWS)
M.Cp.0004: Plant Diseases and Pests in Temperate Climate Zones (6 C, 4 SWS)8239
M.Cp.0016: Practical Statistics and Experimental Design in Agriculture (6 C, 4 SWS)8240
M.FES.324: Environmental Biotechnology and Forest Genetics (6 C, 4 SWS)8241
M.SIA.A02M: Epidemiology of international and tropical animal infectious diseases (6 C, 4 SWS)8242
M.SIA.A14: Organic livestock farming under temperate conditions (6 C, 4 SWS)8244
M.SIA.A15M: Scientific writing in natural sciences (6 C, 4 SWS)8246
M.SIA.E11: Socioeconomics of Rural Development and Food Security (6 C, 4 SWS)8248
M.SIA.E13M: Microeconomic Theory and Quantitative Methods of Agricultural Production (6 C, 4 SWS)
M.SIA.I14M: GIS and remote sensing in agriculture (6 C, 4 SWS)
M.SIA.P13: Agrobiodiversity and plant genetic resources in the tropics (6 C, 4 SWS)8252
M.iPAB.0005: Poultry breeding and genetics (6 C, 4 SWS)8258
M.iPAB.0006: Breeding informatics (6 C, 4 SWS)8260
M.iPAB.0008: Molecular and biotechnological methods in plant and animal breeding (6 C, 4 SWS)
M.iPAB.0009: Genetic resources (6 C, 4 SWS)

M.iPAB.0010: Legal issues in plant and animal breeding (3 C, 2 SWS)	. 8265
M.iPAB.0011: Seed marketing (6 C, 4 SWS)	. 8266
M.iPAB.0012: Journal Club: Key papers in animal and plant breeding (6 C, 4 SWS)	. 8267
M.iPAB.0014: Data Analysis with R (3 C, 2 SWS)	. 8269
M.iPAB.0015: Applied Machine Learning in Agriculture with R (6 C, 4 SWS)	. 8270
M.iPAB.0016: Applied effective R programming in animal breeding and genetics (3 C, 2 SWS)	. 8272
M.iPAB.0017: Applied Bioinformatics with R (6 C, 4 SWS)	8274
M.iPAB.0018: Introduction to the molecular genetic analysis of plant genetic resources (6 C, 4 SWS)	. 8276
M.iPAB.0019: Scientific Project: scientific methods, procedures and practical skills in animal and breeding (9 C, 6 SWS)	•
M.iPAB.0021: Plant in vitro Cultures and Somatic Cell Genetics (6 C, 4 SWS)	. 8281
M.iPAB.0022: Molecular Genetics and Genomics (6 C, 4 SWS)	8283

3. Block C - Elective compulsory modules B

Five additional modules worth overall at least 30 C must be successfully completed. Students can earn the credits through elective modules from any master study programme at the faculty of agriculture, University of Goettingen, from other institutions participating in the programme, or from other agricultural faculties or similar study programmes at other universities.

4. Block D - Key competencies

The following two compulsory modules worth overall 12 C must be successfully completed.

M.iPAB.0007: Biotechnology and molecular genetics in plant and animal breeding (6 C, 4 SWS)...8261

M.iPAB.0013: Selection theory, design and optimisation of breeding programs (6 C, 4 SWS).......8268

5. Master's thesis

Completion of the Master's thesis is worth 24 Credits.

6. Colloquium for the Master's thesis

Successful completion of the colloquium for the Master's thesis is worth 6 Credits.

II. Double-Degree Programme "European Master of Animal Breeding and Genetics" (EMABG)

Modules worth overall 120 C must be successfully completed. Modules worth 60 C must be completed following the regulations of the University of Goettingen. Another 60 C, including the Master's thesis, must be earned and completed at one of the partner universities.

1. Block A - Compulsory modules

2. Block B - Elective compulsory modules

At least four modules worth overall at least 27 C must be successfully completed. From these at least two modules worth overall at least 9 C must be completed from a particular study track (letters a-c).

a. Study Track "Integrative Biology"

M.Cp.0016: Practical Statistics and Experimental Design in Agriculture (6 C, 4 SWS)	
M.iPAB.0006: Breeding informatics (6 C, 4 SWS)8260	
M.iPAB.0008: Molecular and biotechnological methods in plant and animal breeding (6 C, 4 SWS)	
M.iPAB.0014: Data Analysis with R (3 C, 2 SWS)	
M.iPAB.0016: Applied effective R programming in animal breeding and genetics (3 C, 2 SWS)	
M.iPAB.0017: Applied Bioinformatics with R (6 C, 4 SWS)	

b. Study Track "Genomic selection"

M.iPAB.0003: Statistical genetics, breeding informatics and experimental design (6 C, 4 SWS)	3256
M.iPAB.0006: Breeding informatics (6 C, 4 SWS)	3260
M.iPAB.0008: Molecular and biotechnological methods in plant and animal breeding (6 C, 4 SWS)	3263
M.iPAB.0014: Data Analysis with R (3 C, 2 SWS)	3269
M.iPAB.0016: Applied effective R programming in animal breeding and genetics (3 C, 2 SWS)	3272

c. Study Track "Biological and societal context of breeding"

Only one of the moduls M.SIA.E11 and E13M can be chosen.

M.SIA.E11: Socioeconomics of Rural Development and Food Security (6 C, 4 SWS)8248
M.SIA.E13M: Microeconomic Theory and Quantitative Methods of Agricultural Production (6 C, 4 SWS)

M.iPAB.0003: Statistical genetics, breeding informatics and experimental design (6 C, 4 SWS)	. 8256
M.iPAB.0010: Legal issues in plant and animal breeding (3 C, 2 SWS)	8265
M.iPAB.0014: Data Analysis with R (3 C, 2 SWS)	. 8269
M.iPAB.0016: Applied effective R programming in animal breeding and genetics (3 C, 2 SWS)	. 8272

d. Other modules

M.Cp.0016: Practical Statistics and Experimental Design in Agriculture (6 C, 4 SWS) 8240
M.SIA.A02M: Epidemiology of international and tropical animal infectious diseases (6 C, 4 SWS)
M.SIA.E11: Socioeconomics of Rural Development and Food Security (6 C, 4 SWS)8248
M.SIA.E13M: Microeconomic Theory and Quantitative Methods of Agricultural Production (6 C, 4 SWS)
M.iPAB.0003: Statistical genetics, breeding informatics and experimental design (6 C, 4 SWS)
M.iPAB.0005: Poultry breeding and genetics (6 C, 4 SWS)8258
M.iPAB.0006: Breeding informatics (6 C, 4 SWS)8260
M.iPAB.0008: Molecular and biotechnological methods in plant and animal breeding (6 C, 4 SWS)
M.iPAB.0010: Legal issues in plant and animal breeding (3 C, 2 SWS)
M.iPAB.0012: Journal Club: Key papers in animal and plant breeding (6 C, 4 SWS) 8267
M.iPAB.0014: Data Analysis with R (3 C, 2 SWS)8269
M.iPAB.0015: Applied Machine Learning in Agriculture with R (6 C, 4 SWS)8270
M.iPAB.0016: Applied effective R programming in animal breeding and genetics (3 C, 2 SWS)
M.iPAB.0017: Applied Bioinformatics with R (6 C, 4 SWS)8274
M.iPAB.0019: Scientific Project: scientific methods, procedures and practical skills in animal and plant breeding (9 C, 6 SWS)

e. Alternative modules

In place of the modules listed above, it is also possible to complete other modules (alternative modules) in compliance with the following regulations. As a prerequisite for the consideration of an alternative module, the student must submit a written application addressed to the Studiendekan or Studiendekanin (dean of studies) at the faculty of agriculture. The student must submit the application before attending the respective module. The decision over the notification of acceptance or rejection will be made by the Dean of Study from the faculty of agriculture. Before reaching a decision, he or she will request a written statement from the teaching staff of the respective study programme, on the basis of which to judge the adequacy of requested

replacement of modules. The student's application can be rejected without any explicit declaration of reasons; the student possesses no legal claim with respect to the permission of alternative modules.

Georg-August-Universität Göttingen		6 C
Modul M.Agr.0020: Genome analysis and application of markers in		4 SWS
plantbreeding		
English title: Genome analysis and application of marke	ers in plantbreeding	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Studierende erlernen ihre Kenntnisse in klassischer Genetik auf Problemlösungen		Präsenzzeit:
in züchterischen Situationen anzuwenden. Studierende	erlernen selbständig sich	56 Stunden
Kenntnisse im Umgang mit großen Datensätzen anzueig	gnen und sich in entsprechende	Selbststudium:
Software einzuarbeiten.		124 Stunden
Lehrveranstaltung: Genome analysis and application of markers in plantbreeding (Vorlesung, Übung) Inhalte:		4 SWS
Überblick über verschiedene Typen von molekularen Markern.		
Schätzung von genetischen Distanzen.		
Grundlagen der klassischen Genetik zur Kopplungsanalyse.		
Konstruktion von Kopplungskarten. Markergestützte Rückkreuzung.		
Kartierung von QTL: Theorie und praktische Übungen m früheren Experimenten.		
Grundlagen der Bioinformatik: Vergleich von DNA Sequenzen.		
Prüfung: Klausur (90 Minuten)		6 C
Prüfungsvorleistungen:		
Abgabe der Lösung von Übungsaufgaben		
Prüfungsanforderungen:		
Grundlagenkenntnisse in klassischen und molekularen Methoden der Kartierung von		
Genen.		
Basiskenntnisse im Einsatz molekularer Marker in der Pflanzenzüchtung.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Englisch	Prof. Dr. Timothy Mathes Beissinger
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen Modul M.Agr.0114: Sicherheitsbewertung biotechnologischer Ver-	6 C 4 SWS
fahren in der Pflanzenzüchtung English title: Biosafety evaluation of biotechnological approaches in plant breeding	
Lernziele/Kompetenzen: Vertieftes Verständnis von Sicherheitsbewertung und Sicherheitsmanagement biotechnologischer (einschließlich gentechnischer) Verfahren in der Pflanzenzüchtung; Erkennen komplexer Zusammenhänge zwischen Sicherheitsforschung, Sicherheitsbewertung und -management sowie zwischen gesetzlichen Regulierungen und wissenschaftlich-technischem Fortschritt auf nationaler und internationaler Ebene.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Anwendung und Rechtsrahmen gentechnischer Verfahren (Vorlesung, Exkursion) Inhalte: Sicherheitsbewertung, Beantragung und Durchführung gentechnischer Arbeiten in Labor und Gewächshaus: Rechtsrahmen, Kriterien, Voraussetzungen;Monitoring der Auswirkungen der Markteinführung gentechnisch veränderter Pflanzen: Zielsetzung, Rechtsrahmen, kritische Betrachtung (Zielstellung, Aufwand, Nutzen) ausgewählter Methoden;Gesetzliche Regelungen/Voraussetzungen für Freisetzungsversuche; Durchführung der Sicherheitsbewertung und Versuchsplanung, Beantragung, Versuchsdurchführung; Bedeutung und Notwendigkeit von Koexistenz, Situation in Deutschland/Europa, Confinement-Strategien.	
Lehrveranstaltung: Anwendung und Rechtsrahmen biotechnologischer Verfahren allgemein (Vorlesung, Exkursion) <i>Inhalte</i> : Anwendung und juristische Bewertung biotechnologischer Verfahren in der Pflanzenzüchtung; Sicherheitsforschung, -bewertung und -management; Pflanzen als Produktionsplattform - Perspektiven und Sicherheitsbewertung.	
Lehrveranstaltung: Neue Züchtungsverfahren in der Anwendung (Vorlesung, Exkursion) Inhalte: Gene targeting/editing, gene drive; vergleichende Auswirkung "klassischer" und "neuer" Züchtungsmethoden; Pflanzengenom- und Transkriptomanalyse, Datenbanken; next generation sequencing, Bioinformatik; Bewertung und Regulierung ausgewählter Züchtungsverfahren	
Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: Anwendung und Rechtsrahmen gentechnischer Verfahren:	6 C
Vertieftes Verständnis von gentechnischem Arbeiten in Labor und Freiland; Fallstudien; Monitoring und Koexistenz, Planung und Durchführung gentechnischer Versuche im Freiland;	
Anwendung und Rechtsrahmen biotechnologischer Verfahren allgemein:	

Vertieftes Verständnis von Sicherheitsbewertung und Sicherheitsmanagement biotechnologischer Verfahren in der Pflanzenzüchtung; Fallstudien GV Pflanzen für Futter- und Nahrungsmittelanwendungen, GV Pflanzen als Produktionsplattform für industrielle & pharmazeutische Produkte sowie Energie Neue Züchtungsverfahren in der Anwendung:

Vertieftes Verständnis und Sicherheitsbewertung neuer Züchtungsverfahren einschließlich Gentechnik und genome editing; Fallstudien vergleichende Sicherheitsbewertung und Bioinformatik

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Dr. Ralf Wilhelm
Angebotshäufigkeit:	Dauer:
jedes Sommersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul M.Cp.0004: Plant Diseases and Pe	sts in Temperate Climate	6 C 4 SWS
Zones English title: Plant diseases and pests in temperate c	limate zones	
Lernziele/Kompetenzen: Students will be able to recognize and identify the mathe origin, distribution and dynamics of diseases and development of control methods.	•	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Plant Diseases and Pests in Temperate Climate Zones (Vorlesung, Exkursion, Übung) Inhalte: The main diseases and pests (fungi, viruses, bacteria, nematodes, mites, and insects) of crops (arable crops, vegetables, fruit crops) in temperate climate zones will be presented. The symptoms, diagnosis, biology and life cycles, economic importance, possible control methods will be studied in lectures, practicals and field trips. The economic damage, prognosis, possible control methods using economic thresholds will be presented.		4 SWS
Prüfung: Klausur (45 Minuten) Prüfungsvorleistungen: Teilnahme an Exkursionen und Übungen im Feld Prüfungsanforderungen: Identification and diagnosis of plant pests and diseases of crops of the temperate climate zones, knowledge of the life cycle, distribution, and population dynamics.		6 C
Zugangsvoraussetzungen: Only for students in the study programmes "Crop Protection", EMJMD PlantHealth and "Sustainable international Agriculture".	Empfohlene Vorkenntnisse: keine	
Sprache: Englisch	Modulverantwortliche[r]: Dr. Birger Koopmann	
Angebotshäufigkeit:	Dauer:	

jedes Sommersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Master: 2
Maximale Studierendenzahl: 30	

Georg-August-Universität Göttingen	6 C
Module M.Cp.0016: Practical statistics and experimental design in agriculture	4 WLH
_earning outcome, core skills:	Workload:
The aim of the course is to familiarize students with the basic concepts of statistics and	Attendance time:
heir application in agricultural science. The second goal is to learn the use of software	56 h
backages like SAS.	Self-study time: 124 h
Course: Practical Statistics and Experimental Design in Agriculture (Lecture,	4 WLH
Exercise)	
Contents:	
n the beginning of the course, students are introduced to the basic concepts of statistics	
ike frequency distributions, the normal distribution and hypothesis testing. They are also ntroduced to software packages like SAS, that are used for the practical exercises.	
Regression and correlation analysis are then introduced. Different experimental designs ike randomized block, latin square, and split plot are described and analyzed by one- vay analysis of variance or as factorial experiments. Generalized Linear Models will be used and multivariate data will by analyzed by cluster and principal component methods.	
A large amount of examples and exercises constitute an important aspect of the course, enabling the students to understand and assimilate the theoretical content. Practical analyses of example data sets also provide the students with the required experience	
and skills for future statistical tasks in the context of Mastertheses.	
Examination: Written examination (90 minutes)	6 C
Examination requirements: Knowledge of the basic concepts of statistics and their application in agricultural science and in the use of software packages like SAS.	

Admission requirements:	Recommended previous knowledge:
none	Mathematics, statistics
Language:	Person responsible for module:
English	Dr. Christian Kluth
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	Master: 2
Maximum number of students: 30	

Georg-August-Universität Göttingen		6 C
Module M.FES.324: Environmental Biotechnology and Forest Gene- tics		4 WLH
Learning outcome, core skills: Basic principles of population genetics are introduced, factors shaping genetic diversity of tropical forest species are discussed with emphasis on the reproduction system of tropical forest plants, and genetic diversity patterns of tropical forest trees are described. Main applications of forest genetics are mentioned: provenance research and tree breeding, genetic implications of forest management, forest reproductive material, and conservation of forest genetic resources.		Workload: Attendance time: 56 h Self-study time: 124 h
Course: Tropical Forest Genetics (Lecture)		2 WLH
Course: Environmental Biotechnology (Lecture)	2 WLH
Examination: Oral examination (approx. 15 minutes)		6 C
Examination requirements: Sound knowledge of learning contents, achieveme aspired core skills.	ent of learning outcomes and proof of	
Admission requirements: none	Recommended previous knowledge: none	
Language: English	Person responsible for module: Prof. Dr. Ursula Kües	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester:	
Maximum number of students: not limited		

Georg-August-Universität Göttingen	6 C 4 WLH
Universität Kassel/Witzenhausen	
Module M.SIA.A02M: Epidemiology of international and tropical ani- mal infectious diseases	
Learning outcome, core skills: Based on a scientific and practical up-to-date level, students know to evaluate and develop modern and effective livestock hygiene and husbandry concepts and to integrate them into complex quality management programs. Graduates are trained to be competent in implementing and communicating their knowledge in a multidisciplinary occupational setting that establishes epizootic control programs.	Workload: Attendance time: 84 h Self-study time: 96 h
Course: Epidemiology of international and tropical animal infectious diseases (Lecture, Exercise) <i>Contents</i> : Infectious diseases play an enormous role in international animal health control. National health and veterinary authorities, as well as international organizations (WHO, FAO) are very much involved in the surveillance of epidemics and establishment of health and hygiene monitoring programs. These efforts will increase in future, because of a further globalization of international markets, and will require well-educated experts collaborating worldwide in this multidisciplinary field.	4 WLH
This module will give a generalized view of current epidemics together with a specialized understanding of infectious diseases and hygienic programs in subtropical and tropical countries. Characteristics of the biology of relevant infectious agents like parasites, fungi and bacteria together with their toxins, viruses, and prions will be presented in detail. Some of these germs included in this unit cause severe zoonotic diseases with a lethal danger for humans. Immunological host-defence mechanisms of wild and domestic farm animals against pathogens will be discussed together with modern strategies of active and passive immunizations. Diagnostic methods presently available and new biotechnological approaches in future assay and vaccine development will be demonstrated. The adaptation of practical health and standardized quality management processes to various animal production systems (ruminants, pigs, poultry) and the corresponding management measurements will be explained. The view will deeply focus on environmental impacts (water, soil, air hygiene), epizootiology and modern tools in epizootiological research. It will include biology and eradication of vectors (insects, ticks) transmitting pathogens of animal and zoonotic diseases, as well as biological and chemical methods for vector control.	
In the laboratory course, this module will also communicate well-established techniques of microbiological and parasitological diagnostics. Students will be practically trained in classical methods and in modern biochemical, immunological, biotechnological and molecular biological techniques for the detection of infectious agents, toxins and noxious substances. Tissue culture procedures for vaccine or antibody development are also used. Modification of livestock-environment interactions through human management are discussed.	
Examination: Oral examination (approx. 90 minutes)	6 C

Examination requirements: Knowledge of current veterinary epidemic and infectious diseases inclusive emerging diseases. Background of hygiene and eradication programs. Profound knowledge in important infectious agents (parasites, fungi, bacteria, viruses) as well as toxins and prions. Skills in immunologic defense mechanisms of wildlife, zoo and domesticated animals in connection with modern active and passive vaccination strategies and biotechnological vaccine development. Knowledge in modern diagnostic tools as well as in biology and control of biological vectors (ticks, midges).

Admission requirements: none	Recommended previous knowledge: Basic knowledge (B.Sc. level) of soil, plant and animal sciences
Language: English	Person responsible for module: N. N.
Course frequency: each winter semester; Göttingen	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 30	
Additional notes and regulations: Literature:	
Lecture based materials.	

Georg-August-Universität Göttingen	6 C
Universität Kassel/Witzenhausen	4 WLH
Module M.SIA.A14: Organic livestock farming under temperate con- ditions	
Learning outcome, core skills: Advances in animal nutrition and animal health: Students get to know scientific tools for quantifying, assessing and evaluating problems within organic livestock production.	Workload: Attendance time: 60 h Self-study time:
Animal welfare :	120 h
Students have a basic understanding of animal welfare, familiarize with different organic husbandry systems, practical problems and scientific concepts including how to assess animal welfare both at farm and system level.	
Sustainable forage production systems:	
Students are able to assess the relationships between sward management and structural (yield, botanical composition) and functional (nutrient efficiency) sward characteristics.	
 Course: Animal Welfare (Lecture) Contents: Principles of animal welfare in relation to organic farming; scientific methods of welfare assessment 	1,33 WLH
 Course: Advances in animal nutrition and animal health (Lecture) Contents: Organic livestock production in Europe Possibilities and limitations within organic farming to ensure a high level of animal health Strategies within animal nutrition to increase the efficiency in the use of limited esources System-oriented versus technical approaches 	1,33 WLH
Course: Sustainable forage production systems (Lecture) Contents: • Design and management of a sustainable forage production • Management of forage quality and biodiversity on grassland • Minimizing nutrient losses towards water and atmosphere	1,33 WLH
Examination: Written examination (90 minutes) Examination requirements: Knowledge of basic terms relevant to organic livestock systems; insights into aspects of feeding, healthcare, welfare, forage production and forage quality assessment; linkages and interdependencies between the discussed fields. One written exam with all three parts.	6 C

Admission requirements:	Recommended previous knowledge:
none	Basic knowledge (B.Sc. level) of animal sciences
Language:	Person responsible for module:
English	Prof. Dr. Albert Sundrum
Course frequency:	Duration:
each summer semester; Witzenhausen	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	
Maximum number of students:	
35	

Additional notes and regulations:

Literature:

Advances in animal nutrition and animal health:

 Vaarst, M., Roderick, S., Lund, V., Lockeretz, W. (eds.) 2004: Animal health and welfare in organic agriculture. CABI Publishing

Animal welfare:

- Appleby, M.C., Hughes, B.O. (eds) 1997: Animal welfare. CAB International, Wallingford;
- Vaarst, M. et al. (eds.) 2004: Animal health and welfare in organic Agriculture. CAB International, Wallingford

Sustainable forage production systems:

- Hopkins, A. 2000: Grass, its production and utilization. Blackwell Science, Oxford, UK;
- Cherney J.H. 1998: Grass for dairy cattl.e CABI Publishing, Exon, UK;
- Frame, J. 1992: Improved Grassland Management. Farming Press Books, Ipswich, UK.

Georg-August-Universität Göttingen Universität Kassel/Witzenhausen Module M.SIA.A15M: Scientific writing in r	natural sciences	6 C 4 WLH
 Learning outcome, core skills: In the course of their study programme, when compilir further (academic) career, students have to deliver a v this module aims at presenting and discussing the ma provides training in how to write different types of essa proposals and complex texts (chapters) in preparation research. At successful completion of this module, par differentiate the <u>structure and format</u> of various ty search <u>scientific literature</u>, set up and manage ar and compile reference lists; write term papers, grant proposals, conference a (chapters); compile scientific <u>tables and figures</u> and be able best expressed in which format; apply the rules of <u>good scientific practice</u>; give and receive constructive <u>feedback</u> on scient 	ng their MSc thesis and for their variety of scientific texts. Therefore, in principles of such texts. It ays, abstracts, grant winning and writing of the master thesis ticipants will be able to: ypes of scientific texts; n electronic literature database bstracts, and final thesis to decide which type of data is	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Scientific writing in natural sciences Contents: To provide participants with theoretical basics and practice these, the module will offer a mixture of lecture and exercises. Within the course a variety of facets and techniques of scientific writing will be imparted that graduate SIA students should be able to master. Consequently, participants are introduced to scientific literature search and analysis, good scientific practice and how to avoid plagiarism. Additionally, guidelines for creating concise tables and figures are presented. To be prepared for their master thesis work, students will be taught how to write different scientific text documents such as grant proposals and conference abstracts. By reviewing and discussing a scientific article and peer-reviewing an abstract of a fellow student by using an online tool, module participants will train how to give and receive constructive feedback. Finally, students will choose a topic for their term paper (see below) to further apply the newly acquired knowledge.		
Examination: 3 short written assignments (approx. 4 pages, 50%) are to be handed in during the semester and one major text (term paper, approx. 6 pages 50%) is to be submitted at the end of the semester.		6 C
Admission requirements: Recommended previous knowle none Basic knowledge of Word (Microso and Adobe Acrobat.		-

 Language:
 Person responsible for module:

 English
 Prof. Dr. Eva Schlecht

Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	1 - 3
Maximum number of students: 30	

Georg-August-Universität Göttingen		6 C
Universität Kassel/Witzenhausen		4 WLH
Module M.SIA.E11: Socioeconomics of rural development and food security		
Learning outcome, core skills: Students learn concepts of development and problem-oriented thinking in a development policy context. The identification of interdisciplinary linkages is trained. Building on case-study analyses, course participants can pinpoint appropriate economic and social policies and assess their impacts. These qualifications can also be transferred to unfamiliar situations.		Workload: Attendance time: 56 h Self-study time: 124 h
Course: Socioeconomics of rural development and food security (Lecture) <i>Contents</i> : This module provides students with an overview of socioeconomic aspects of hunger and poverty in developing countries. Apart from more conceptual issues and development theories, policy strategies for rural development and poverty alleviation are discussed and analyzed. Special emphasis is put on problems in the small farm sector. Numerous empirical examples are used to illustrate the main topics.		4 WLH
Examination: Written examination (90 minutes) Examination requirements: Concepts and measurement of hunger and poverty; development theory; classification and evaluation of rural development policies		6 C
Admission requirements: none	Recommended previous knowledge: Prior knowledge of microeconomics at the BSc le	
Language: English	Person responsible for module: Prof. Dr. Matin Qaim	
Course frequency: each winter semester; Göttingen	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester:	
Maximum number of students: 120		
Additional notes and regulations: Literature:		
Text books, research articles and lecture notes.		

Georg-August-Universität Göttingen		6 C
Universität Kassel/Witzenhausen		4 WLH
Module M.SIA.E13M: Microeconomic theory and quantitative me- thods of agricultural production		
Learning outcome, core skills: Microeconomic Theory of Agricultural Production		Workload: Attendance time:
Students are familiar with microeconomic approaches issues related to agriculture and rural development.	and can apply them to analyze	56 h Self-study time: 124 h
Quantitative Methods in Agricultural Business Econon	nics	12711
Students are familiar with quantitative methods used f farms and enterprises in the agricultural sector.	or the analysis and planning of	
Course: Microeconomic theory of agricultural production (Lecture) Contents: Consumer theory, producer theory, markets, monopoly situations, risk and uncertainty, economics of technical change, farm household models, sharecropping contracts.		2 WLH
Course: Quantitative methods in agricultural business economics (Lecture) Contents: Budgeting, accounting, annual balance sheets, linear programming, finance, investment analysis		2 WLH
Examination: Written examination (120 minutes) Examination requirements: Consumer theory; producer theory; risk; technological progress; farm household models; budgeting and accounting; linear programming; finance; investment analysis		6 C
Admission requirements: Recommended previous knowle		dge:
Language: English	Person responsible for module: Prof. Dr. Matin Qaim	
Course frequency: each winter semester; Göttingen	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester:	
Maximum number of students: 40		
Additional notes and regulations: Literature:		
Text books, research articles and lecture notes. After successful conclusion of M.Agr.0060 students can not complete M.SIA.E13M		

Georg-August-Universität Göttingen	6 C 4 WLH
Universität Kassel/Witzenhausen	
Module M.SIA.I14M: GIS and remote sensing in agriculture	
Learning outcome, core skills: GIS: A broad overview of basic GIS functions and related background knowledge should enable students to explore GIS-Software for relevant commands and prepare functional strategies for spatial data management and analysis. Lecture and exercise examples have predominantly agricultural reference.	Workload: Attendance time: 56 h Self-study time: 124 h
Remote Sensing	
The lecture will introduce physical principles (reflectance, transmittance, and absorption), sensor techniques (passive and active sensors, satellites, field spectrometer) and methods of analysis (calibration, validation) in remote sensing applications. This technical framework is presented using agricultural examples, as e.g. the generation of maps for crop yield and protein, assessment of species composition in mixed vegetation (e.g. grassland), like legume content for a calculation of residual nitrogen and crop rotation effects.	
Course: GIS (Lecture) <i>Contents</i> : The course gives an introduction to Geographical Information Systems (GIS). Starting from geodetical background information, a wide range of different GIS- methods and - functions are presented using agricultural examples (e.g. data import, georeferencing, aggregation, (re)classification, interpolation, overlays and image analysis). The students have the opportunity to carry out exercises on the computer themselves for some important GIS-procedures. A special focus is given on data capturing using maps and field data survey with GPS as well as the spatial analysis of site conditions. Finally a particular view on GIS in organic farm management and Precision Farming is given.	2 WLH
Course: Remote sensing in agriculture (Lecture) <i>Contents</i> : The lecture will introduce physical principles (reflectance, transmittance, and absorption), sensor techniques (passive and active sensors, satellites, field spectrometer) and methods of analysis (calibration, validation) in remote sensing applications. This technical framework is presented using agricultural examples, as e.g. the generation of maps for crop yield and protein, assessment of species composition in mixed vegetation (e.g. grassland), like legume content for a calculation of residual nitrogen and crop rotation effects.	2 WLH
Examination: Oral examination (approx. 30 minutes) Examination requirements:	6 C

Knowledge about basic GIS functions and the preparations of functional strategies for spatial data management. Knowledge of physical principles, methods of analysis and sensor techniques.		
Admission requirements: none	Recommended previous knowledge: none	
Language: English	Person responsible for module: Dr. Thomas Möckel	
Course frequency: each winter semester; Witzenhausen	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester:	
Maximum number of students: 20		
Additional notes and regulations: Literature:		
Principles of Geographical Information Systems by Peter A. Burrough and Rachael A. McDonnell (2015)		
Introduction to Remote Sensing by James B. Campbell a ndRandolph H. Wynne (2011)		

Georg-August-Universität Göttingen	6 C
Universität Kassel/Witzenhausen	4 WLH
Module M.SIA.P13: Agrobiodiversity and plant genetic resources in the tropics	
Learning outcome, core skills: Students are able to understand the role of agrobiodiversity in tropical agro-ecosystems, to present approaches of functional biodiversity analysis and to discuss the needs and strategies of on-farm (in situ) and off-farm conservation of plant genetic resources.	Workload: Attendance time 56 h Self-study time: 124 h
Course: Agrobiodiversity and plant genetic resources in the tropics (Lecture, Seminar) <i>Contents</i> : Case-study based analysis of the role of biodiversity for selected crops in different agro- ecosystems from the arid to the humid climate zones; importance of biodiversity for the stability / sustainability of smallholder (subsistence) versus commodity-oriented commercial agriculture in the Tropics, assessment and utilization of diversity, principles and practices in conservation of genetic resources, role of homegardens and indigenous wild fruit trees for in situ conservation of biodiversity, causes and consequences of genetic erosion, approaches of germplasm collection.	4 WLH
Examination: Oral exam (about 15 minutes, 60%) and presentation (about 20 minutes, 40%) Examination requirements: Students should be able to understand the role of agrobiodiversity in tropical agroecosystems, to present basic approaches to functionally analyse biodiversity and to discuss the need of and strategies for <i>in</i> and <i>ex situ</i> conservation of genetic resources.	6 C

Admission requirements:	Recommended previous knowledge:
none	Basic knowledge in plant and soil sciences
Language:	Person responsible for module:
English	Prof. Dr. Gunter Backes
Course frequency:	Duration:
each winter semester; Witzenhausen	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: not limited	

Additional notes and regulations:

Literature:

Altieri, M. 1987: Agroecology: the scientific basis of alternative agriculture. Westview Press, Boulder, Colorado, USA; Eyzaguirre, P.B., Linares, O.F. 2004: Home gardens and agrobiodiversity. Smithsonia

Books, Washington, USA; Wood, D., Lenne, J.M. 1999: Agrobiodiversity: Characterization, utilization and management. CABI Publishing, Wallingford, UK.

Georg-August-Universität Göttingen Module M.iPAB.0001: Quantitative genetio	cs and population genetics	6 C 6 WLH
Learning outcome, core skills: Advanced knowledge of the basic model of quantitative genetics, genetic effects and parameters, breeding values and variances. Similarity between relatives, inbreeding, crossbreeding and heterosis. Dynamics of genetic variability in limited populations.		Workload: Attendance time: 84 h Self-study time: 96 h
Course: Quantitative genetics and population genetics (Lecture, Exercise) <i>Contents</i> : The genetic composition of a population in a single locus model, changes of gene and genotype frequencies, the polygenic model, components of phenotypic variance, relationship and inbreeding, heterosis and inbreeding depression, genetic drift, linkage disequilibrium, selection signatures. All contents are initially taught in theory and are consolidated in practical computer exercises (some with real data).		6 WLH
Literature: Falconer & Mackay, Introduction to Quantitative Genetics (Prentice Hall), Lynch and Walsh, Genetics and Analysis of Quantitative Traits (Sinauer)		
Examination: Written examination (90 minutes) Examination requirements: Advanced knowledge of the quantitative-genetic and population genetic basics of breeding, ability to apply appropriate methods to real data sets. Final exam with practical examination on computer.		6 C
Admission requirements: none	Recommended previous knowled Basic knowledge of plant and anim	•
Denoen reenensible for medules		

none	Basic knowledge of plant and animal breeding
Language: English	Person responsible for module: Prof. Dr. Henner Simianer
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	Master: 1
Maximum number of students:	
20	

Georg-August-Universität Göttingen	6 C
Module M.iPAB.0002: Breeding schemes and programs in plant and animal breeding	4 WLH
Learning outcome, core skills:	Workload:
Students will learn the basic elements and structures of breeding programs in plant and	Attendance time: 56 h
animal breeding. They understand the relationship between biological characteristics of the crop or livestock species and the specific design of the breeding program.	Self-study time:
The students know the four breeding categories and design possibilities of breeding programs for self-pollination, cross-pollination and	124 h
vegetative and clonally propagated crops. They learn breeding programs for major crops and livestock species.	
Course: Breeding schemes and programs in plant and animal breeding (Lecture,	4 WLH
Excursion)	
Contents:	
Design of breeding programs. Basic elements of breeding programs: Breeding	
objectives and breeding planning, performance testing, selection and mate selection,	
use of biotechnologies, transfer of breeding progress in the production level, monitoring	
of the breeding progress. Breeding program structures in the most important crop	
species: cereals, corn, rape, sugar beet, specialty crops. Breeding program structures	
in the main livestock species: dairy cattle, pigs, poultry, beef cattle, small ruminants. Breeding program structures in forest genetics.	
Examination: Written exam (45 minutes, 50%) and Presentation (about 20 minutes)	6 C
with written outline (max. 10 pages) (50%)	
Examination requirements:	
Profound knowledge of basic breeding program structures and elements of breeding	
programs and their concrete implementation to various crops and livestock. Elaboration of the breeding planning for a livestock or crop species.	

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Prof. Dr. Timothy Mathes Beissinger
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1
Maximum number of students: 20	
Additional notes and regulations:	

Mandatory excursions to practical plant breeding and animal breeding programs.

Georg-August-Universität Göttingen		6 C
Module M.iPAB.0003: Statistical genetics, breeding informatics and experimental design		4 WLH
Learning outcome, core skills: Novel biotechnological methods allow the producti sequences, genotypes, transcriptomes) at decreas statistical and computational methods to use these Furthermore, the main experimental designs to pla and efficient experiments for data generation will b	sing costs. Students learn about e records for breeding issues. an, implement, and evaluate targeted	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Statistical genetics, breeding informat (Lecture, Exercise) Contents: • Gene Expression Analysis • Genome-wide association analysis • QTL mapping • Statistical hypothesis testing • Regression methods • Analysis of variance • Multiple testing • Experimental designs (block designs, random • Sample size estimation • Introduction to programming • Fundamentals of databases		4 WLH
Literature: Andrea Foulkes: Applied Statistical Ger Statistical Experiment Design and Interpretation; A Examples		
Examination: Written examination (60 minutes) Examination requirements: Profound knowledge of statistic and informatics methods to use them for breeding issues.		6 C
Admission requirements: none	Recommended previous knowledge: Basics in statistics and genetics	
Language:	Person responsible for module:	

Language: English	Person responsible for module: Prof. Dr. Armin Schmitt
Course frequency:	Duration:
course nequency.	
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	
twice Maximum number of students:	

Georg-August-Universität Göttingen Module M.iPAB.0004: Internship		9 C 6 WLH
Learning outcome, core skills: Specialized knowledge of the respective field, social organization, teamwork, interdisciplinary working, flex competences.		Workload: Attendance time: 240 h Self-study time: 30 h
Course: Internship (Internship) Contents: Practical working in different areas of plant and animat research, consulting). Insights to working methods, a everyday professional life in plant and animal breedin applied knowledge and skills. Duration of Internship: 6 weeks Examination: Homework (max. 20 pages, 50%) an minutes, 50%) Examination requirements: Practical working in different areas of plant and animat presentation.	reas of responsibility and the ag. Acquisition of practical and d presentation (about 20	6 WLH 9 C
Admission requirements: none	Recommended previous knowle	edge:
Language: English	Person responsible for module: Prof. Dr. Stefan Scholten	
Course frequency: each semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester:	
Maximum number of students: 20		

Georg-August-Universität Göttingen		6 C
Module M.iPAB.0005: Poultry breeding and genetics		4 WLH
 Learning outcome, core skills: The module teaches substantiated and application-opoultry breeding sector. The main organizational and current breeding programs as well as their optimizati will be provided. Thereby, breeding strategies of releconcentrating on the development of selection strate (adaption to climate, disease resistance, behavior, remetabolic dysfunction). Students will learn the applic genetic technologies for the applied research in poulting contents: Structure, Organization and Economics of Poul Breeding Strategies for primary and functional to (genetics and breeding in reproduction, feed contents) 	rientated understandings of the d technological elements of the on to future breeding challenges evant economic traits will be shown gies to improve functional traits eproduction, product quality, ration of quantitative and molecular try breeding. Excursion) try Breeding traits in poultry and water fowl onversion, growth, product quality,	Workload: Attendance time: 56 h Self-study time: 124 h
 This includes particularly: Methods of phenotyping and performance testin Estimation of breeding values (conventional and Selection index and BLUP Genome-wide association studies (GWAS) and Omics Software application 	d genomic)	
Examination: Written examination (90 minutes) Examination prerequisites: Attendance to the mandatory excursion Examination requirements: Profound knowledge about applied poultry breeding.		6 C
Admission requirements: none	Recommended previous knowled Basic knowledge of animal breedi	•
Language: English	Person responsible for module: Dr. sc. agr. Ahmad Reza Sharifi	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester:	
Maximum number of students: 30		

Additional notes and regulations:

Attendance to the mandatory two-day excursion.

Georg-August-Universität Göttingen Module M.iPAB.0006: Breeding informatics	6 C 4 WLH
Learning outcome, core skills: Students deepen their knowledge of informatics methods to evaluate large datasets for breeding issues.	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Breeding informatics (Lecture, Exercise) Contents: Design and implementation of databases with mySQL Basic data structures Programming in R and Perl Regular expressions Design and implementation of pipelines for data analysis Shell scripts on Linux (gawk, sed) Relation of genotype - phenotype Measures to detect selection signatures Basic concepts of bioinformatics	4 WLH
Examination: Written examination (90 minutes) Examination requirements: Profound knowledge of informatic methods to evaluate large datasets for breeding issues.	6 C

Admission requirements: none	Recommended previous knowledge: Basic knowledge of molecular genetics, statistics, programing
Language: English	Person responsible for module: Prof. Dr. Armin Schmitt
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Module M.iPAB.0007: Biotechnology an	d molecular genetics in plant	6 C 4 WLH
and animal breeding		Mortdood
Profound knowledge of biotechnologies to decipher phenotypes and traits for plant nd animal breeding. Skills to use appropriate molecular genetic tools to elucidate the enetic basis of traits. Development of creativity and independent as well as globally		Workload: Attendance time: 56 h Self-study time: 124 h
Course: Biotechnology and molecular genetics (Lecture, Excursion) <i>Contents</i> : Basics of genetics (Mendelian inheritance; karyogra structure; epigenetics), Biotechnologies for animal B Spermsexing; embryo transfer and associated tech embryo sexing, stem cells, cloning), Biotechnologie induction of haploids, direct and indirect genetic tra somatic hybridization), Molecular genetics (PCR; ql DNA markers; miRNA; Sanger sequencing; express Sequencing; array techniques; cytogenetics; protect Literature: Clark & Pazdernik: Biotechnology (Acad Dooley: Veterinary Endocrinology and Reproduction Applied Animal Endocrinology (CABI); Krebs, Kirkp (Jones and Bartlett Publishing); Brown: Gene clonir Science); Journal: Trends in Plant Science (Elsevie	ams; DNA, RNA and protein; gene breeding (Artificial Insemination; niques such as in vitro fertilization, es for plant breeding (in vitro cloning, nsformation, interspecific sexual and PCR; Recombinant DNA Technology; sion analysis; Next Generation omics; genome editing techniques). emic Cell Publishing); Pineda & n (Blackwell Publishing); Squires: atrick, Goldstein: Lewin's Gene XI ng and DNA analysis (Blackwell	4 WLH
Examination: Written examination (90 minutes) Examination requirements: The examinee should show the potential to solve breeding challenges applying the best biotechnologies and most accurate molecular genetic tools.		6 C
Admission requirements: none	Recommended previous knowle Basics in animal and plant breedin	-
Language: English	Person responsible for module: Prof. Dr. Jens Tetens	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted:	Recommended semester: Master: 1	
twice		

The module includes a mandatory excursion to a DNA/Transcriptomics core facility or a breeding

organisation.
Georg-August-Universität Göttingen		6 C
Module M.iPAB.0008: Molecular and biote plant and animal breeding	echnological methods in	4 WLH
Learning outcome, core skills:		Workload:
In addition to the theoretical background (Module M.A	Agr.0131 (Biotechnology and	Attendance time:
molecular genetics in plant and animal breeding)), the	e students should improve their	56 h
basic knowledge in biotechnologies and molecular ge	enetics by learning hand-on skills	Self-study time:
in the lab. The students should be capable to perform present them in an adequate manner.	experiments on their own and to	124 h
Course: Molecular and biotechnological methods (Block course, Practical course) <i>Contents</i> :	in plant and animal breeding	4 WLH
Sample collection; DNA and RNA isolation; Sanger S appropriate software programs; Separation and visua and quantitative PCR; ELISA assays to determine ho non pregnancy testing system; microsatellites; SNP; semen evaluation; in vitro generation and genetic and indirect transformation; protoplasts, in vitro propagation gene cloning.	lization of nucleic acids; qualitative rmone profiles or as a pregnancy/ AFLP; storage of DNA and RNA; alyses of embryos; direct and	
Literature: e.g. Current Protocols in molecular biology laboratory endocrinology: Introduction to Plant Biotec	•	
Examination: Protocol (max. 40 pages, 80%) and 20%) Examination requirements: The examinees should provide detailed information ir biological background of the methods. The examinee	their protocols including the	6 C
ability to conduct experiments in the lab.		
Admission requirements:	Recommended previous knowle	dge:

Admission requirements:	Recommended previous knowledge:
M.Agr.0131	none
Language:	Person responsible for module:
English	Prof. Dr. Jens Tetens
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	Master: 2
Maximum number of students: 20	

Georg-August-Universität Göttingen		6 C 4 WLH
Module M.iPAB.0009: Genetic resourc		
Learning outcome, core skills: Students learn the value of genetic resources for crop and livestock. They know different methods to describe the genetic diversity and for prioritization of measures for conservation and can apply them to a practical example. They know how to collect, evaluate and conserve genetic resources. They know different technological approaches (in vivo, in vitro) for the conservation and management of genetic resources. The students know methods for the utilization of genetic resources for breeding programs. The students know the history, political meaning and the institutions of the global system for the conservation of plant and animal genetic resources.		
Course: Genetic resources (Lecture, Seminar) Contents: Definition of genetic resources. Primary, secondary and tertiary gene pool. Crossability and adaptation of genetic resources. Genetic distances. Multivariate methods for DNA markers and phenotypic traits. Cluster analysis, principal component analysis. Implementation of analytical methods with appropriate software. Utilization of genetic resources for breeding. Starting points for the expansion of breeding pools with genetic resources. Monitoring of diversity and performance in the expansion of breeding pools.		4 WLH
Excursion to the gene bank in Gatersleben Literature: FAO (2015) The Second Report on th Resources for Food and Agriculture	ne State of the World's Animal Genetic	
 Examination: Written exam (45 minutes, 50%) and presentation (about 20 minutes, 50%) Examination requirements: Overview of genetic resources and their use in a livestock or crop species. Profound knowledge of utilization and conservation of genetic resources. 		6 C
Admission requirements: none	Recommended previous knowledge: Basics of plant and animal breeding	
Language: English	Person responsible for module: Prof. Dr. Nils Stein	
Course frequency:	Duration:	

 Course frequency:
 Duration:

 each winter semester
 1 semester[s]

 Number of repeat examinations permitted:
 Recommended semester:

 twice
 Maximum number of students:

 20
 20

Georg-August-Universität Göttingen		3 C
Module M.iPAB.0010: Legal issues in plant and animal breeding		2 WLH
Learning outcome, core skills: The students know the relevant laws, regulations and procedures for plant and animal breeding in the areas of patent law, plant variety rights, plant variety protection, animal breeding, animal protection. Students know the legal basis for genetically modified organisms in the EU and globally. The students gain a deeper understanding of the importance of legal issues in breeding.		Workload: Attendance time: 26 h Self-study time: 64 h
Course: Legal issues in plant and animal breeding (Lecture, Seminar) Contents: Legal issues in plant and animal breeding (Lecture and Seminar) Contents: International intellectual property rights, biological patents, agreements on genetic resources, GMO laws and regulations incl. The preparatory phase of European legislation for modern biological breeding tools for genome editing. In terms of plant breeding, the module covers the following topics: plant breeders 'rights, European and German breeders' rights and marketing rights for seeds including procedures for testing and acceptance of varieties and operating license obtained seed. Regarding the animal breeding, the module covers the following topics: German animal breeding law, European legal framework, animal breeding related aspects of animal welfare legislation, legal regulations on animal testing, legal regulations of international trade with breeding animals and breeding products. Literature: Plant Variety Protection Law, Animal Breeding Law, Patent Law, regulation on genetically modified food and feed		2 WLH
Examination: Written examination (45 minutes) Examination requirements: Profound knowledge of all aspects of the legal basis of plant and animal breeding. Preparation of a case study on legal issues.		3 C
Admission requirements: none	Recommended previous knowledge:	
Language: English	Person responsible for module: Prof. Dr. Henner Simianer	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester:	

Maximum number of students:

20

Georg-August-Universität Göttingen		6 C
Module M.iPAB.0011: Seed marketing		4 WLH
Learning outcome, core skills:		Workload:
Students can apply the tools of marketing to the specifi	ics of the researchintensive	Attendance time:
seed market. They will be able to apply modern resear	ch methods in order to collect	56 h
information on agricultural procurement processes and	public settings. On this basis	Self-study time:
they can develop targeted strategies for national and ir	nternational markets. They know	124 h
customized concepts and methods of distribution.		
Course: Seed marketing (Seminar)		4 WLH
Contents:		
The marketing of seed is a hitherto largely unexplored	field of research. In the research-	
oriented master's degree program, the students will lea	arn the basics of the business-	
to-business marketing (positioning, market segmentation	on, competitive strategies,	
international marketing, marketing tools, sales manage	ement) and its application to the	
purchasing behavior of farmers. Since the seed market	t is a socially critical debated	
topic, fundamentals of public relations and the corporation	te social responsibility are taught.	
In a project report in the second part of the seminar, st	udents will elaborate their own	
studies on current aspects of the seed marketing and p	present it in a presentation.	
Examination: Written exam (60 minutes, 50%) and	presentation (about 30 minutes,	6 C
50%)		
Examination requirements:		
Students show in the exam that they know the basics of seed marketing. In a scientific		
presentation they can demonstrate that they can apply	this knowledge to current	
problems of the subject and are able to transfer their ki	nowledge.	
Admission requirements:	Recommended previous knowle	dao

Admission requirements: none	Recommended previous knowledge: Basic knowledge of marketing and market research (incl. statistics)
Language:	Person responsible for module:
English	Prof. Dr. Achim Spiller
Course frequency:	Duration:
every 4th semesterEvery 2 years. Start SoSe 2017	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	Master: 2 - 4
Maximum number of students: 30	

Georg-August-Universität Göttingen	6 C
Module M.iPAB.0012: Journal Club: Key papers in animal and plant breeding	4 WLH
Learning outcome, core skills: Students gain competences in the opening and discussion of a scientific topic by using the literature in the field of plant and animal breeding. They also obtain skills in oral and written presentation of their investigation.	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Journal Club: Key papers in animal and plant breeding (Lecture, Seminar) <i>Contents</i> : Teaching of methods for collecting and using of scientific contents and papers for a specific topic. Ability to discuss scientific texts in a deepened substantive way on the basis of a comprehensive literature review.	4 WLH
Examination: Presentation (about 20 minutes) with written outline (max. 10 pages) Examination prerequisites: Regular participation in 10 seminars Examination requirements: Preparation of a literature based seminar presentation including discussion and a short draft, Preparation of a co-moderation and discussion leading, attendance to seminars.	6 C
Admission requirements: Recommended previous knowle	edge:

none	none
Language: English	Person responsible for module: Prof. Dr. Jens Tetens
Course frequency: each semester	Duration: 2 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

4 WLH Workload: Attendance time: 56 h Self-study time: 124 h e e 4 WLH
ex Attendance time: 56 h Self-study time: 124 h e e 4 WLH
s r ic
6 C
t

Admission requirements: none	Recommended previous knowledge: Good knowledge of quantitative genetics and statistics
Language: English	Person responsible for module: Prof. Dr. Timothy Mathes Beissinger
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Georg-August-Universität Göttingen		3 C 2 WLH
Module M.iPAB.0014: Data Analysis with R		
Learning outcome, core skills: The students will be able to use methods provided by the statistical package R to perform the analysis of data sets that are typical in the life sciences. A core skill is the identification, usage and evaluation of online resources (e.g. packages and data sets).		Workload: Attendance time: 28 h Self-study time: 62 h
Course: Data Analysis with R (Block course, Lecture, Exercise) Contents: The fundamental concepts of the programming package R will be presented and deepened during practical exercises. Statistical methods will be recapitulated if necessary. Special emphasis is put on visualization methods.		2 WLH
Literature: Wiki-book "R programming" https://en.wikibooks.org/wiki/R_Programming		
"R for Beginners" by Emanuel Paradis https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf		
"R tips" by Paul E. Johnson http://pj.freefaculty.org/R/Rtips.pdf		
Examination: Oral examination (approx. 20 minutes) Examination requirements: Ability to analyze typical data sets with the statistical package R and interpretation of the results.		3 C
Admission requirements: none	Recommended previous knowledge: Knowledge of basic statistics concepts	
Language: English	Person responsible for module: Dr. Mehmet Gültas	
Course frequency: each semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	s permitted: Recommended semester: Master: 4	

Maximum number of students: 24

Georg-August-Universität Göttingen Module M.iPAB.0015: Applied Machine Learning in Agriculture with R	6 C 4 WLH
Learning outcome, core skills: Modern agricultural research involves more and more the analysis of large datasets comprising mesaurements of several variables. This module aims to teach interested students fundamental analysis skills that permit them to cope with such data sets. In more detail, the techniques that will be treated include:	Workload: Attendance time: 56 h Self-study time: 124 h
 clustering artificial neural networks support vector machine decision trees random forests feature selection 	
Involved mathematical formalism will be avoided. The focus is rather on:	
 gaining an intuitive understanding of the techniques to develop an understanding about which type of problem can be treated with which technique the application of the techniques using machine learning-functions under R the graphical visualisation of the results and the interpretation of the results 	
The teaching will be based on the analysis of published real data sets from agricultural research projects as far as possible.	
Course: Applied Machine Learning in Agriculture with R (Block course) Contents: The course consists of lectures, exercises and project work. After the lectures and the exercises the students will have to carry out a project work that must be finished within eight weeks after the end of the lectures. The students as well as the other research groups are welcome to suggest topics, possibly questions related to their master thesis can be treated. The project work should be a concise written report of about ten pages in which one or several of the techniques that were treated in the course are applied.	4 WLH
Examination: Oral examination (approx. 20 minutes, 60%) and term paper (max. 10 pages, 40%)	
 Examination requirements: Knowledge about the analysis of big-data sets with the statistical package R and interpretation of the results. Knowledge about different clustering algorithms Analysis of real agricultural data sets by applying different machine learning-functions under R 	

Admission requirements: Recommended previous knowledge: Basic knowledge of R	Recommended previous knowledge: none
Language: English	Person responsible for module: Dr. Mehmet Gültas
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 25	

Georg-August-Universität Göttingen Module M.iPAB.0016: Applied effective R breeding and genetics	programming in animal	3 C 2 WLH
Learning outcome, core skills: The students will be able to efficiently use the programing language R on big animal datasets and to implement automated workflows for animal data analysis. They also will be enabled to distribute their implementations to end users.		Workload: Attendance time: 28 h Self-study time: 62 h
Course: Applied effective R programming in animal breeding and genetics (Lecture, Exercise) <i>Contents</i> : Effective usage of the programming language R applied to animal breeding and genetics examples. This includes detailed knowledge about the use of different data types and objects in R, automation and optimization of workflows, connection to third party software. • Data input/ output • Matrix algebra in R • Effective data management • Profiling/ Benchmarking • String modifications • Parallelization • Running self-executable R scripts via the command line		2 WLH
Examination: Term paper (max. 30 pages) (max. 30 pages) Examination prerequisites: Regular attendance of course Examination requirements: The term paper must include the code; self-executable application for a predefined task with focus on efficiency and usability, short description on how the task was solved.		3 C
Admission requirements: Basic knowledge of the programming language R, for example proven by the successful participation in the modules • M.Agr.0141: Data Analysis with R • B.Agr.0375: Bioinformatik • B.Agr.0308: Biometrie or comparable modules or proofs of knowledge.	Recommended previous knowle Basic command of R	dge:
Language: English	Person responsible for module: Prof. Dr. Henner Simianer	
Course frequency: each summer semester Number of repeat examinations permitted:	Duration: 1 semester[s] Recommended semester:	

twice	Master: 2	
Maximum number of students: 30		
Additional notes and regulations: EMABG students will be taken preferred before all others. iPAB and M.Agr. Animal Science before others.		

Georg-August-Universität Göttingen Module M.iPAB.0017: Applied Bioinformat	tics with R	6 C 4 WLH
Learning outcome, core skills:		Workload:
This module will cover the fundamental concepts of bi usage of relevant/modern biological databases and to different analyses. Further, an introduction to multi-orr genome, trancriptome and proteome analysis. This m students fundamental analysis skills to evaluate biolog techniques, and to become proficient in performing su	ols that are required to perform nics-data will be given, including odule aims to teach interested gical data using bioinformatic	Attendance time: 56 h Self-study time: 124 h
In more detail, following topics will be treated:		
 Analysis of multi-omics data Standard databases in bioinformatics DNA sequence and genome analysis Variant calling techniques Sequence alignment Gene regulatory network analysis Clustering 		
The lecture will be based on the analysis of real data s projects as far as possible.	sets from agricultural research	
Course: Applied Bioinformatics with R (Lecture, E) Contents:	kercise)	4 WLH
The course consists of lectures, exercises and a proje exercises the students will have to carry out a project ten weeks after the end of the lectures. The students a groups are welcome to suggest topics, possibly quest can be treated. The project work should be a concise in which one or several of the techniques that were tree	work that must be finished within as well as the other research ions related to their master thesis written report of about ten pages	
Examination: Oral examination (approx. 20 minute pages, 25%)	es, 75%) and term paper (max. 10	6 C
 Examination requirements: Knowledge about the fundamental concepts of b Knowledge about different databases in bioinform Analysis of biological data, interpretation and mo and applying this to the solution of biological pro molecular data. 	matics odeling og biological information	
Admission requirements:	Recommended previous knowle	dge:

Admission requirements:	Recommended previous knowledge:
none	Basic knowledge of R
Language:	Person responsible for module:
English	Dr. Mehmet Gültas
Course frequency:	Duration:
each winter semester	1 semester[s]

Number of repeat examinations permitted:	Recommended semester:
twice	
Maximum number of students:	
30	

Georg-August-Universität Göttingen Module M.iPAB.0018: Introduction to the molecular genetic analysis of plant genetic resources	6 C 4 WLH
Learning outcome, core skills: Students apply knowledge acquired in Module M.Agr.0133: Genetic Resources (GenRes). They have a broad overview of available molecular marker technologies for characterisation and quality management of GenRes. They familiarize by own hands- on experience with next-generation-sequencing based characterization of plant genetic resources. They apply computational tools for raw data acquisition and perform basic analytical steps in population characterization, genetic diversity analysis and/or genetic mapping.	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Introduction to the molecular genetic analysis of plant genetic resources (Block course, Excursion, Seminar) <i>Contents</i> : Introduction into Molecular Marker and Next Generation Sequencing Technologies: principle of methodology, sample preparation requirements, infrastructure requirements for data storage and analysis. <u>Wet lab experiments</u> (performed in teams of two at IPK): NGS library preparation, NGS sequencing and data acquisition.	4 WLH
 Data analysis experiments individually and as a team, at IPK: existing training datasets will be used for performing basic steps of raw data processing and downstream data analysis (read mapping, SNV calling, allele frequency test, mapping, GWAS, PCA) group work/homework: NGS samples processed during the practical course will be analysed in team work by the participants based on the acquired knowledge. Results will be presented and discussed during the literature seminar day at GAU. Literature seminar: every participant will select an original paper on the topic during the course and present a seminar to the group at a later timepoint during the same semester. 	
Excursion to IPK Genebank: this excursion to IPK will give insights into in field collection management during replication cycles for self-, cross-pollinating crops or vegetatively propagated species including practices of acquisition of legacy data. <i>Literature:</i> FAO (2015) The Second Report on the State of the World's Animal Genetic Resources for Food and Agriculture;	
Examination: Written report (max. 10 pages, 50%) and presentation (approx. 20 minutes; 50%) Examination requirements: Submission of written reports (lab protocols and analysis results); knowledge of molecular marker and NGS technology for collection characterisation and management	6 C

M.Agr.0133	Basics of plant and animal breeding, Molecular Genetics
Language: English	Person responsible for module: Prof. Dr. Nils Stein
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 10	

Georg-August-Universität Göttingen		9 C
Module M.iPAB.0019: Scientific Project: scientific methods, proce- dures and practical skills in animal and plant breeding		6 WLH
Learning outcome, core skills: Advanced knowledge of scientific methods, procedure of animal as well as plant breeding acquired by the ac project. Students also gain key competencies such as working, and self-organization.	ctive participation in a research	Workload: Attendance time: 60 h Self-study time: 210 h
Course: Scientific Project: scientific methods, procedures and practical skills in animal and plant breeding <i>Contents</i> : Working on a scientific project in the different fields of breeding research. Testing of scientific hypotheses, experimental design, analysis of genotyping data, data analysis, interpretation and presentation of the research results.		6 WLH
Examination: Term paper (max. 20 pages) Examination requirements: Active and independent working on a plant or animal breeding related scientific issue.		9 C
Admission requirements: The students, who are enrolled in the "Integrated plant and animal breeding (IPAB)" program, must get an approval from the program coordinator at least one month prior to the desired start date of the project.	Recommended previous knowle Basics of plant and animal breedin scientific writing	-
Language: English	Person responsible for module: Dr. Mehmet Gültas	
Course frequency: each semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester:	
Maximum number of students: 25		

Georg-August-Universität Göttingen		9 C
Module M.iPAB.0020: Breeding Lab Internship		
Learning outcome, core skills: Students acquire professional and social skills to successfully execute a team project in complex international animal breeding business conditions. Students gather, select, and analyze information and integrate it into a viable R&D proposition, aimed at value creation. Students attain the ability to systematically evaluate information following a systematic structure, as well as take complexity (such as cultural and social awareness) into account during decision making. Furthermore, students practice professional behavior and habitus in a competitive international environment. They are able to discuss and defend their viewpoints and conclusions in a professional and academically correct way before industry representatives.		Workload: Attendance time: 160 h Self-study time: 110 h
Course: Breeding Lab Internship (Internship, Seminar) Contents: Management structures, communication and collaboration techniques when working in diverse groups, conflict management, product concept development, industry methods and practices, as well as insights into areas of responsibility and the everyday professional life of an animal breeder. Students experience a specialized animal breeding working environment outside of a university setting.		
Placement in non-university setting approx.4 weeks Examination: Presentation (approx. 15 minutes, 50%) with written report (max. 15 pages, 50%) Examination prerequisites: Practical work in non-university animal breeding field. Regular attendance during the four weeks. Examination requirements: Reflection on learning outcomes and personal experiences, as well as problem-solving capabilities and working in a diverse group outside of a university setting.		9 C
Admission requirements: Only EMABG Students Language:	Recommended previous knowle none Person responsible for module:	dge:
English	Prof. Dr. Henner Simianer	
Course frequency: each summer semester	Duration: 1 semester[s]	

Additional notes and regulations:

Maximum number of students:

twice

20

Number of repeat examinations permitted:

Recommended semester:

from 1

Students are present approx. 4 weeks at an associated partner (non-university organization) to gain insights and establish contact regarding R&D proposition. The students have extended time (approx. 4 weeks) to work on their project upon leaving the associated partner. Whenever possible, the result will be presented to and co-graded by a representative from the associated partner.

Georg-August-Universität Göttingen Module M.iPAB.0021: Plant in vitro Cultures and Somatic Cell Gene- tics	6 C 4 WLH
Learning outcome, core skills:	Workload:
The students are able to plan and perform plant bio- and gene-technological procedures	Attendance time:
independently and to assess their suitability for breeding related questions considering	56 h
scientific and economic issues.	Self-study time:
	124 h

	<u> </u>
Course: Plant in vitro Cultures and Somatic Cell Genetics (Block course, Lecture, Exercise)	
Contents:	
Lecture Contents	
 Overview on bio- and gene-technological methods Theoretical basis, genetics and epigenetics of plant tissue culture methods Focus on Somatic Hybridization-, Doubled-Haploid- and Genome Editing-related plant tissue culture technology Methodology and strategies in genome editing and its verification Applications in applied breeding and plant research Scientific standards of lab work documentation 	
Practical Contents	
 Design and cloning of gene specific guide-RNA Protoplast fusion and transformation Mutation detection and analysis Biolistic Transformation Embryo rescue and germination 	
Basics and context of biotechnological practical work by means of discrete, consecutive project work on CRISPR/Cas9 based genome editing including vector design, cloning and activity validation. The project sequence includes:	
 In silico design of gene specific guide RNA Cloning of CRISPR/Cas9 vectors Transient transformation of the vectors in protoplasts Determination of the mutation efficiency by endonuclease assays 	
Examination: Protocol (max. 25 pages, 70%) and oral examination (approx. 15 min., 30%). Examination requirements: Regular attendance of practical (minimum of 90%).	6 C

Formal protocol with scientifically sound lab work documentation including introduction, methods, results and discussion.

Knowledge on practical implementation, execution and applicability of molecular and cell culture methods in research and breeding

Admission requirements:	Recommended previous knowledge:
none	Units of applied molecular biology and its conversion
Language:	Person responsible for module:
English	Prof. Dr. Stefan Scholten
Course frequency: each summer semester	Duration:
Number of repeat examinations permitted:	Recommended semester:
twice	until 3
Maximum number of students: 12	

Georg-August-Universität Göttingen	6 C		
Module M.iPAB.0022: Molecular Genetics and Genomics		4 WLH	
Learning outcome, core skills: The students are able to plan and perform complex molecular techniques independently and to assess their suitability for breeding related questions considering scientific and economic factors.		Workload: Attendance time: 80 h Self-study time: 100 h	
Course: Molecular Genetics and Genomics (Block Contents:	course, Lecture, Exercise)		
 Lecture Contents Overview on molecular methods in gene and ge Theoretical basis of classical and new marker te Methodology, areas of use, and automation of se Applications in applied breeding and breeding red 	chnologies equencing technologies		
Practical Contents			
Basics of molecular biology practical work with nucleic performing polymerase chain reactions (PCR), short s nucleotide polymorphism (SNP) marker protocols.			
Robotics for high-throughput and miniaturization of me of using pipetting robots for single steps of the custom			
Custom procedures for genome and transcriptome an			
 Production of sequencing libraries for genotyping DNA by sequencing (GBS). Production of sequencing libraries for strand specific 3' targeted gene expression analysis by Digital Gene Expression RNA sequencing (3' DGE RNA-seq). 			
Examination: Protocol (max. 25 pages, 70%) and oral examination (approx. 15 min., 30%) Examination requirements: Regular attendance of practical (minimum of 90%).		6 C	
Formal protocol with scientifically sound lab work documentation including introduction, methods, results and discussion.			
Knowledge on practical implementation, execution and applicability of molecular marker and sequencing technology in research and breeding			
Admission requirements: none	Recommended previous knowle	dge:	
Language:	Person responsible for module:		

English

Course frequency:

each winter semester

Number of repeat examinations permitted:

Prof. Dr. Stefan Scholten

Recommended semester:

Duration:

1 semester[s]

twice	
Maximum number of students: 12	